Vulnerabilities

117 via 202 paths

Dependencies

810

Source

GitHub

Commit

fd48e4af

Find, fix and prevent vulnerabilities in your code.

Severity
  • 4
  • 55
  • 52
  • 6
Status
  • 117
  • 0
  • 0

critical severity

Use After Free

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3
    Remediation: Upgrade to node-sass@4.13.1.

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Use After Free. A use-after-free vulnerability exists in handle_error() in sass_context.cpp in LibSass 3.4.x and 3.5.x through 3.5.4 that could be leveraged to cause a denial of service (application crash) or possibly unspecified other impact. node-sass is affected by this vulnerability due to its usage of libsass.

Remediation

Upgrade node-sass to version 4.13.1 or higher.

References

critical severity

Improper Input Validation

  • Vulnerable module: socket.io-parser
  • Introduced through: socket.io-client@2.1.1 and socket.io@2.1.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io-client@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io-client@2.2.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io@2.2.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 socket.io-client@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io@2.2.0.

Overview

socket.io-parser is a socket.io protocol parser

Affected versions of this package are vulnerable to Improper Input Validation. when parsing attachments containing untrusted user input. Attackers can overwrite the _placeholder object to place references to functions in query objects.

PoC

const decoder = new Decoder();

decoder.on("decoded", (packet) => {
  console.log(packet.data); // prints [ 'hello', [Function: splice] ]
})

decoder.add('51-["hello",{"_placeholder":true,"num":"splice"}]');
decoder.add(Buffer.from("world"));

Remediation

Upgrade socket.io-parser to version 3.3.3, 3.4.2, 4.0.5, 4.2.1 or higher.

References

critical severity

Improper Input Validation

  • Vulnerable module: xmldom
  • Introduced through: passport-twitter@1.0.4

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 passport-twitter@1.0.4 xtraverse@0.1.0 xmldom@0.1.31

Overview

xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.

Affected versions of this package are vulnerable to Improper Input Validation due to parsing XML that is not well-formed, and contains multiple top-level elements. All the root nodes are being added to the childNodes collection of the Document, without reporting or throwing any error.

Workarounds

One of the following approaches might help, depending on your use case:

  1. Instead of searching for elements in the whole DOM, only search in the documentElement.

  2. Reject a document with a document that has more than 1 childNode.

PoC

var DOMParser = require('xmldom').DOMParser;
var xmlData = '<?xml version="1.0" encoding="UTF-8"?>\n' +
'<root>\n' +
'  <branch girth="large">\n' +
'    <leaf color="green" />\n' +
'  </branch>\n' +
'</root>\n' +
'<root>\n' +
'  <branch girth="twig">\n' +
'    <leaf color="gold" />\n' +
'  </branch>\n' +
'</root>\n';
var xmlDOM = new DOMParser().parseFromString(xmlData);
console.log(xmlDOM.toString());

This will result with the following output:

<?xml version="1.0" encoding="UTF-8"?><root>
  <branch girth="large">
    <leaf color="green"/>
  </branch>
</root>
<root>
  <branch girth="twig">
    <leaf color="gold"/>
  </branch>
</root>

Remediation

There is no fixed version for xmldom.

References

critical severity

Incomplete List of Disallowed Inputs

  • Vulnerable module: babel-traverse
  • Introduced through: nodemailer-sendgrid-transport@0.2.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 babel-traverse@6.26.0

Overview

Affected versions of this package are vulnerable to Incomplete List of Disallowed Inputs when using plugins that rely on the path.evaluate() or path.evaluateTruthy() internal Babel methods.

Note:

This is only exploitable if the attacker uses known affected plugins such as @babel/plugin-transform-runtime, @babel/preset-env when using its useBuiltIns option, and any "polyfill provider" plugin that depends on @babel/helper-define-polyfill-provider. No other plugins under the @babel/ namespace are impacted, but third-party plugins might be.

Users that only compile trusted code are not impacted.

Workaround

Users who are unable to upgrade the library can upgrade the affected plugins instead, to avoid triggering the vulnerable code path in affected @babel/traverse.

Remediation

There is no fixed version for babel-traverse.

References

high severity

NULL Pointer Dereference

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to NULL Pointer Dereference in the function Sass::Functions::selector_append which could be leveraged by an attacker to cause a denial of service (application crash) or possibly have unspecified other impact. node-sass is affected by this vulnerability due to its bundled usage of libsass.

Remediation

There is no fixed version for node-sass.

References

high severity

NULL Pointer Dereference

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3
    Remediation: Upgrade to node-sass@4.11.0.

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to NULL Pointer Dereference. An issue was discovered in LibSass through 3.5.4. A NULL pointer dereference was found in the function Sass::Inspect::operator which could be leveraged by an attacker to cause a denial of service (application crash) or possibly have unspecified other impact.

Remediation

Upgrade node-sass to version 4.11.0 or higher.

References

high severity

Use After Free

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Use After Free via the SharedPtr class in SharedPtr.cpp (or SharedPtr.hpp) that may cause a denial of service (application crash) or possibly have unspecified other impact. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

high severity
new

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: cross-spawn
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 cross-spawn@3.0.1
    Remediation: Upgrade to node-sass@5.0.0.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.

PoC

const { argument } = require('cross-spawn/lib/util/escape');
var str = "";
for (var i = 0; i < 1000000; i++) {
  str += "\\";
}
str += "◎";

console.log("start")
argument(str)
console.log("end")

// run `npm install cross-spawn` and `node attack.js` 
// then the program will stuck forever with high CPU usage

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade cross-spawn to version 6.0.6, 7.0.5 or higher.

References

high severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: ip
  • Introduced through: nodemailer-mailgun-transport@1.4.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-mailgun-transport@1.4.0 mailgun-js@0.18.1 proxy-agent@3.0.3 socks-proxy-agent@4.0.2 socks@2.3.3 ip@1.1.5
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-mailgun-transport@1.4.0 mailgun-js@0.18.1 proxy-agent@3.0.3 pac-proxy-agent@3.0.1 socks-proxy-agent@4.0.2 socks@2.3.3 ip@1.1.5

Overview

ip is a Node library.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) via the isPublic function, by failing to identify hex-encoded 0x7f.1 as equivalent to the private addess 127.0.0.1. An attacker can expose sensitive information, interact with internal services, or exploit other vulnerabilities within the network by exploiting this vulnerability.

PoC

var ip = require('ip');

console.log(ip.isPublic("0x7f.1"));
//This returns true. It should be false because 0x7f.1 == 127.0.0.1 == 0177.1

Remediation

Upgrade ip to version 1.1.9, 2.0.1 or higher.

References

high severity

Command Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@4.6.8

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer@4.6.8
    Remediation: Upgrade to nodemailer@6.4.16.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Command Injection. Use of crafted recipient email addresses may result in arbitrary command flag injection in sendmail transport for sending mails.

PoC

-bi@example.com (-bi Initialize the alias database.)
-d0.1a@example.com (The option -d0.1 prints the version of sendmail and the options it was compiled with.)
-Dfilename@example.com (Debug output ffile)

Remediation

Upgrade nodemailer to version 6.4.16 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic was insufficient when extracting tar files that contained both a directory and a symlink with the same name as the directory, where the symlink and directory names in the archive entry used backslashes as a path separator on posix systems. The cache checking logic used both \ and / characters as path separators. However, \ is a valid filename character on posix systems.

By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location. This can lead to extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite.

Additionally, a similar confusion could arise on case-insensitive filesystems. If a tar archive contained a directory at FOO, followed by a symbolic link named foo, then on case-insensitive file systems, the creation of the symbolic link would remove the directory from the filesystem, but not from the internal directory cache, as it would not be treated as a cache hit. A subsequent file entry within the FOO directory would then be placed in the target of the symbolic link, thinking that the directory had already been created.

Remediation

Upgrade tar to version 6.1.7, 5.0.8, 4.4.16 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain two directories and a symlink with names containing unicode values that normalized to the same value. Additionally, on Windows systems, long path portions would resolve to the same file system entities as their 8.3 "short path" counterparts. A specially crafted tar archive can include directories with two forms of the path that resolve to the same file system entity, followed by a symbolic link with a name in the first form, lastly followed by a file using the second form. This leads to bypassing node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and extracting arbitrary files into that location.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain .. path portions, and resolving the sanitized paths against the extraction target directory.

This logic is insufficient on Windows systems when extracting tar files that contain a path that is not an absolute path, but specify a drive letter different from the extraction target, such as C:some\path. If the drive letter does not match the extraction target, for example D:\extraction\dir, then the result of path.resolve(extractionDirectory, entryPath) resolves against the current working directory on the C: drive, rather than the extraction target directory.

Additionally, a .. portion of the path can occur immediately after the drive letter, such as C:../foo, and is not properly sanitized by the logic that checks for .. within the normalized and split portions of the path.

Note: This only affects users of node-tar on Windows systems.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: xmldom
  • Introduced through: passport-twitter@1.0.4

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 passport-twitter@1.0.4 xtraverse@0.1.0 xmldom@0.1.31

Overview

xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.

Affected versions of this package are vulnerable to Prototype Pollution through the copy() function in dom.js. Exploiting this vulnerability is possible via the p variable.

DISPUTED This vulnerability has been disputed by the maintainers of the package. Currently the only viable exploit that has been demonstrated is to pollute the target object (rather then the global object which is generally the case for Prototype Pollution vulnerabilities) and it is yet unclear if this limited attack vector exposes any vulnerability in the context of this package.

See the linked GitHub Issue for full details on the discussion around the legitimacy and potential revocation of this vulnerability.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

There is no fixed version for xmldom.

References

high severity

Asymmetric Resource Consumption (Amplification)

  • Vulnerable module: body-parser
  • Introduced through: body-parser@1.18.3 and express@4.16.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 body-parser@1.18.3
    Remediation: Upgrade to body-parser@1.20.3.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express@4.16.3 body-parser@1.18.2
    Remediation: Upgrade to express@4.20.0.

Overview

Affected versions of this package are vulnerable to Asymmetric Resource Consumption (Amplification) via the extendedparser and urlencoded functions when the URL encoding process is enabled. An attacker can flood the server with a large number of specially crafted requests.

Remediation

Upgrade body-parser to version 1.20.3 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: le_node@1.8.0 and lodash@4.17.10

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 le_node@1.8.0 lodash@4.17.11
    Remediation: Open PR to patch lodash@4.17.11.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 lodash@4.17.10
    Remediation: Upgrade to lodash@4.17.20.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The function zipObjectDeep can be tricked into adding or modifying properties of the Object prototype. These properties will be present on all objects.

PoC

const _ = require('lodash');

_.zipObjectDeep(['__proto__.z'],[123]);

console.log(z); // 123

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.20 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient symlink protection. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain both a directory and a symlink with the same name as the directory. This order of operations results in the directory being created and added to the node-tar directory cache. When a directory is present in the directory cache, subsequent calls to mkdir for that directory are skipped. However, this is also where node-tar checks for symlinks occur. By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location.

Remediation

Upgrade tar to version 3.2.3, 4.4.15, 5.0.7, 6.1.2 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient absolute path sanitization.

node-tar aims to prevent extraction of absolute file paths by turning absolute paths into relative paths when the preservePaths flag is not set to true. This is achieved by stripping the absolute path root from any absolute file paths contained in a tar file. For example, the path /home/user/.bashrc would turn into home/user/.bashrc.

This logic is insufficient when file paths contain repeated path roots such as ////home/user/.bashrc. node-tar only strips a single path root from such paths. When given an absolute file path with repeating path roots, the resulting path (e.g. ///home/user/.bashrc) still resolves to an absolute path.

Remediation

Upgrade tar to version 3.2.2, 4.4.14, 5.0.6, 6.1.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: ajv
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 request@2.87.0 har-validator@5.0.3 ajv@5.5.2
    Remediation: Upgrade to node-sass@4.9.4.

Overview

ajv is an Another JSON Schema Validator

Affected versions of this package are vulnerable to Prototype Pollution. A carefully crafted JSON schema could be provided that allows execution of other code by prototype pollution. (While untrusted schemas are recommended against, the worst case of an untrusted schema should be a denial of service, not execution of code.)

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade ajv to version 6.12.3 or higher.

References

high severity

Internal Property Tampering

  • Vulnerable module: bson
  • Introduced through: connect-mongo@2.0.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 connect-mongo@2.0.1 mongodb@2.2.36 mongodb-core@2.1.20 bson@1.0.9
    Remediation: Upgrade to connect-mongo@3.0.0.

Overview

bson is a BSON Parser for node and browser.

Affected versions of this package are vulnerable to Internal Property Tampering. The package will ignore an unknown value for an object's _bsotype, leading to cases where an object is serialized as a document rather than the intended BSON type.

NOTE: This vulnerability has also been identified as: CVE-2019-2391

Remediation

Upgrade bson to version 1.1.4 or higher.

References

high severity

Internal Property Tampering

  • Vulnerable module: bson
  • Introduced through: connect-mongo@2.0.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 connect-mongo@2.0.1 mongodb@2.2.36 mongodb-core@2.1.20 bson@1.0.9
    Remediation: Upgrade to connect-mongo@3.0.0.

Overview

bson is a BSON Parser for node and browser.

Affected versions of this package are vulnerable to Internal Property Tampering. The package will ignore an unknown value for an object's _bsotype, leading to cases where an object is serialized as a document rather than the intended BSON type.

NOTE: This vulnerability has also been identified as: CVE-2020-7610

Remediation

Upgrade bson to version 1.1.4 or higher.

References

high severity

Arbitrary Code Execution

  • Vulnerable module: js-yaml
  • Introduced through: i18next-node-fs-backend@2.0.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 i18next-node-fs-backend@2.0.0 js-yaml@3.12.0
    Remediation: Upgrade to i18next-node-fs-backend@2.1.3.

Overview

js-yaml is a human-friendly data serialization language.

Affected versions of this package are vulnerable to Arbitrary Code Execution. When an object with an executable toString() property used as a map key, it will execute that function. This happens only for load(), which should not be used with untrusted data anyway. safeLoad() is not affected because it can't parse functions.

Remediation

Upgrade js-yaml to version 3.13.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.7.5

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 mongoose@5.7.5
    Remediation: Upgrade to mongoose@5.13.20.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution in document.js, via update functions such as findByIdAndUpdate(). This allows attackers to achieve remote code execution.

Note: Only applications using Express and EJS are vulnerable.

PoC


import { connect, model, Schema } from 'mongoose';

await connect('mongodb://127.0.0.1:27017/exploit');

const Example = model('Example', new Schema({ hello: String }));

const example = await new Example({ hello: 'world!' }).save();
await Example.findByIdAndUpdate(example._id, {
    $rename: {
        hello: '__proto__.polluted'
    }
});

// this is what causes the pollution
await Example.find();

const test = {};
console.log(test.polluted); // world!
console.log(Object.prototype); // [Object: null prototype] { polluted: 'world!' }

process.exit();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.13.20, 6.11.3, 7.3.4 or higher.

References

high severity

Out-of-bounds Read

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3
    Remediation: Upgrade to node-sass@4.11.0.

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-bounds Read. An issue was discovered in LibSass through 3.5.4. An out-of-bounds read of a memory region was found in the function Sass::Prelexer::skip_over_scopes which could be leveraged by an attacker to disclose information or manipulated to read from unmapped memory causing a denial of service. node-sass is affected by this vulnerability due to its bundled usage of libsass.

Remediation

Upgrade node-sass to version 4.11.0 or higher.

References

high severity

Remote Code Execution (RCE)

  • Vulnerable module: pac-resolver
  • Introduced through: nodemailer-mailgun-transport@1.4.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-mailgun-transport@1.4.0 mailgun-js@0.18.1 proxy-agent@3.0.3 pac-proxy-agent@3.0.1 pac-resolver@3.0.0

Overview

Affected versions of this package are vulnerable to Remote Code Execution (RCE). This can occur when used with untrusted input, due to unsafe PAC file handling.

In order to exploit this vulnerability in practice, this either requires an attacker on your local network, a specific vulnerable configuration, or some second vulnerability that allows an attacker to set your config values.

NOTE: The fix for this vulnerability is applied in the node-degenerator library, a dependency is written by the same maintainer.

PoC

const pac = require('pac-resolver');

// Should keep running forever (if not vulnerable):
setInterval(() => {
    console.log("Still running");
}, 1000);

// Parsing a malicious PAC file unexpectedly executes unsandboxed code:
pac(`
    // Real PAC config:
    function FindProxyForURL(url, host) {
        return "DIRECT";
    }

    // But also run arbitrary code:
    var f = this.constructor.constructor(\`
        // Running outside the sandbox:
        console.log('Read env vars:', process.env);
        console.log('!!! PAC file is running arbitrary code !!!');
        console.log('Can read & could exfiltrate env vars ^');
        console.log('Can kill parsing process, like so:');
        process.exit(100); // Kill the vulnerable process
        // etc etc
    \`);

    f();

Remediation

Upgrade pac-resolver to version 5.0.0 or higher.

References

high severity

Remote Code Execution (RCE)

  • Vulnerable module: pug
  • Introduced through: pug@2.0.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 pug@2.0.3
    Remediation: Upgrade to pug@3.0.1.

Overview

pug is an A clean, whitespace-sensitive template language for writing HTML

Affected versions of this package are vulnerable to Remote Code Execution (RCE). If a remote attacker was able to control the pretty option of the pug compiler, e.g. if you spread a user provided object such as the query parameters of a request into the pug template inputs, it was possible for them to achieve remote code execution on the node.js backend.

Remediation

Upgrade pug to version 3.0.1 or higher.

References

high severity

Arbitrary Code Injection

  • Vulnerable module: xmlhttprequest-ssl
  • Introduced through: socket.io-client@2.1.1 and socket.io@2.1.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io-client@2.1.1 engine.io-client@3.2.1 xmlhttprequest-ssl@1.5.5
    Remediation: Upgrade to socket.io-client@2.2.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 socket.io-client@2.1.1 engine.io-client@3.2.1 xmlhttprequest-ssl@1.5.5
    Remediation: Upgrade to socket.io@2.2.0.

Overview

xmlhttprequest-ssl is a fork of xmlhttprequest.

Affected versions of this package are vulnerable to Arbitrary Code Injection. Provided requests are sent synchronously (async=False on xhr.open), malicious user input flowing into xhr.send could result in arbitrary code being injected and run.

POC

const { XMLHttpRequest } = require("xmlhttprequest")

const xhr = new XMLHttpRequest()
xhr.open("POST", "http://localhost.invalid/", false /* use synchronize request */)
xhr.send("\\');require(\"fs\").writeFileSync(\"/tmp/aaaaa.txt\", \"poc-20210306\");req.end();//")

Remediation

Upgrade xmlhttprequest-ssl to version 1.6.2 or higher.

References

high severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: netmask
  • Introduced through: nodemailer-mailgun-transport@1.4.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-mailgun-transport@1.4.0 mailgun-js@0.18.1 proxy-agent@3.0.3 pac-proxy-agent@3.0.1 pac-resolver@3.0.0 netmask@1.0.6

Overview

netmask is a library to parse IPv4 CIDR blocks.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF). It incorrectly evaluates individual IPv4 octets that contain octal strings as left-stripped integers, leading to an inordinate attack surface on hundreds of thousands of projects that rely on netmask to filter or evaluate IPv4 block ranges, both inbound and outbound.

For example, a remote unauthenticated attacker can request local resources using input data 0177.0.0.1 (127.0.0.1), which netmask evaluates as the public IP 177.0.0.1. Contrastingly, a remote authenticated or unauthenticated attacker can input the data 0127.0.0.01 (87.0.0.1) as localhost, yet the input data is a public IP and can potentially cause local and remote file inclusion (LFI/RFI). A remote authenticated or unauthenticated attacker can bypass packages that rely on netmask to filter IP address blocks to reach intranets, VPNs, containers, adjacent VPC instances, or LAN hosts, using input data such as 012.0.0.1 (10.0.0.1), which netmask evaluates as 12.0.0.1 (public).

NOTE: This vulnerability has also been identified as: CVE-2021-29418

Remediation

Upgrade netmask to version 2.0.1 or higher.

References

high severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: netmask
  • Introduced through: nodemailer-mailgun-transport@1.4.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-mailgun-transport@1.4.0 mailgun-js@0.18.1 proxy-agent@3.0.3 pac-proxy-agent@3.0.1 pac-resolver@3.0.0 netmask@1.0.6

Overview

netmask is a library to parse IPv4 CIDR blocks.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF). It incorrectly evaluates individual IPv4 octets that contain octal strings as left-stripped integers, leading to an inordinate attack surface on hundreds of thousands of projects that rely on netmask to filter or evaluate IPv4 block ranges, both inbound and outbound.

For example, a remote unauthenticated attacker can request local resources using input data 0177.0.0.1 (127.0.0.1), which netmask evaluates as the public IP 177.0.0.1. Contrastingly, a remote authenticated or unauthenticated attacker can input the data 0127.0.0.01 (87.0.0.1) as localhost, yet the input data is a public IP and can potentially cause local and remote file inclusion (LFI/RFI). A remote authenticated or unauthenticated attacker can bypass packages that rely on netmask to filter IP address blocks to reach intranets, VPNs, containers, adjacent VPC instances, or LAN hosts, using input data such as 012.0.0.1 (10.0.0.1), which netmask evaluates as 12.0.0.1 (public).

NOTE: This vulnerability has also been identified as: CVE-2021-28918

Remediation

Upgrade netmask to version 2.0.1 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ansi-regex
  • Introduced through: cli-table2@0.2.0, node-sass@4.9.3 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 cli-table2@0.2.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 npmlog@4.1.2 gauge@2.7.4 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 npmlog@4.1.2 gauge@2.7.4 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 sass-graph@2.2.6 yargs@7.1.2 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.1.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 npmlog@4.1.2 gauge@2.7.4 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.1.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 sass-graph@2.2.6 yargs@7.1.2 cliui@3.2.0 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.1.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 npmlog@4.1.2 gauge@2.7.4 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.1.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 sass-graph@2.2.6 yargs@7.1.2 cliui@3.2.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.1.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 sass-graph@2.2.6 yargs@7.1.2 cliui@3.2.0 wrap-ansi@2.1.0 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.1.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 sass-graph@2.2.6 yargs@7.1.2 cliui@3.2.0 wrap-ansi@2.1.0 string-width@1.0.2 strip-ansi@3.0.1 ansi-regex@2.1.1
    Remediation: Upgrade to node-sass@7.0.1.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 strip-ansi@3.0.1 ansi-regex@2.1.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 babel-traverse@6.26.0 babel-code-frame@6.26.0 chalk@1.1.3 has-ansi@2.0.0 ansi-regex@2.1.1

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the sub-patterns [[\\]()#;?]* and (?:;[-a-zA-Z\\d\\/#&.:=?%@~_]*)*.

PoC

import ansiRegex from 'ansi-regex';

for(var i = 1; i <= 50000; i++) {
    var time = Date.now();
    var attack_str = "\u001B["+";".repeat(i*10000);
    ansiRegex().test(attack_str)
    var time_cost = Date.now() - time;
    console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ansi-regex to version 3.0.1, 4.1.1, 5.0.1, 6.0.1 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: apollo-server-core
  • Introduced through: graphql-server-express@1.4.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 graphql-server-express@1.4.0 apollo-server-express@1.4.0 apollo-server-core@1.4.0

Overview

apollo-server-core is a core module of the Apollo community GraphQL Server.

Affected versions of this package are vulnerable to Denial of Service (DoS) by accepting an unbounded amount of memory in the cache.

NOTE: The size of a cache can be limited with the cache: "bounded" option as of version 3.9.0.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade apollo-server-core to version 3.9.0 or higher.

References

high severity

Information Exposure

  • Vulnerable module: apollo-server-core
  • Introduced through: graphql-server-express@1.4.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 graphql-server-express@1.4.0 apollo-server-express@1.4.0 apollo-server-core@1.4.0

Overview

apollo-server-core is a core module of the Apollo community GraphQL Server.

Affected versions of this package are vulnerable to Information Exposure. It does not properly enforce validation rules when creating subscription servers, which includes a NoInstrospection rule for the Websocket. This leaks the GraphQL schema types, their relations and human-readable names.

Remediation

Upgrade apollo-server-core to version 2.14.2 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: async
  • Introduced through: async@2.6.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 async@2.6.1
    Remediation: Upgrade to async@2.6.4.

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the mapValues() method, due to improper check in createObjectIterator function.

PoC

//when objects are parsed, all properties are created as own (the objects can come from outside sources (http requests/ file))
const hasOwn = JSON.parse('{"__proto__": {"isAdmin": true}}');

//does not have the property,  because it's inside object's own "__proto__"
console.log(hasOwn.isAdmin);

async.mapValues(hasOwn, (val, key, cb) => cb(null, val), (error, result) => {
  // after the method executes, hasOwn.__proto__ value (isAdmin: true) replaces the prototype of the newly created object, leading to potential exploits.
  console.log(result.isAdmin);
});

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade async to version 2.6.4, 3.2.2 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 axios@0.18.0
    Remediation: Upgrade to axios@0.21.3.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the trim function.

PoC

// poc.js

var {trim} = require("axios/lib/utils");

function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}

return ret + "1";
}

var time = Date.now();
trim(build_blank(50000))
var time_cost = Date.now() - time;
console.log("time_cost: " + time_cost)

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade axios to version 0.21.3 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: engine.io
  • Introduced through: socket.io@2.1.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 engine.io@3.2.1
    Remediation: Upgrade to socket.io@2.5.0.

Overview

engine.io is a realtime engine behind Socket.IO. It provides the foundation of a bidirectional connection between client and server

Affected versions of this package are vulnerable to Denial of Service (DoS) via a POST request to the long polling transport.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade engine.io to version 3.6.0 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: engine.io
  • Introduced through: socket.io@2.1.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 engine.io@3.2.1
    Remediation: Upgrade to socket.io@2.5.0.

Overview

engine.io is a realtime engine behind Socket.IO. It provides the foundation of a bidirectional connection between client and server

Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious client could send a specially crafted HTTP request, triggering an uncaught exception and killing the Node.js process.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade engine.io to version 3.6.1, 6.2.1 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: html-to-text
  • Introduced through: nodemailer-html-to-text@3.0.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-html-to-text@3.0.0 html-to-text@4.0.0
    Remediation: Upgrade to nodemailer-html-to-text@3.2.0.

Overview

html-to-text is an Advanced html to plain text converter

Affected versions of this package are vulnerable to Denial of Service (DoS). The application may crash when the parsed HTML is either very deep or has a big amount of DOM elements.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade html-to-text to version 6.0.0 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: i18next
  • Introduced through: i18next@11.6.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 i18next@11.6.0
    Remediation: Upgrade to i18next@19.8.5.

Overview

i18next is an internationalization framework for browser or any other javascript environment (eg. node.js).

Affected versions of this package are vulnerable to Prototype Pollution via getLastOfPath() in i18next.js.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade i18next to version 19.8.5 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: cli-table2@0.2.0, nodemailer-sendgrid-transport@0.2.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 le_node@1.8.0 lodash@4.17.11
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 lodash@4.17.10
    Remediation: Upgrade to lodash@4.17.17.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution through the zipObjectDeep function due to improper user input sanitization in the baseZipObject function.

PoC

lodash.zipobjectdeep:

const zipObjectDeep = require("lodash.zipobjectdeep");

let emptyObject = {};


console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined

zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function

console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true

lodash:

const test = require("lodash");

let emptyObject = {};


console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined

test.zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function

console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.17 or higher.

References

high severity

Directory Traversal

  • Vulnerable module: moment
  • Introduced through: moment@2.22.2

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 moment@2.22.2
    Remediation: Upgrade to moment@2.29.2.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of this package are vulnerable to Directory Traversal when a user provides a locale string which is directly used to switch moment locale.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade moment to version 2.29.2 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: moment@2.22.2

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 moment@2.22.2
    Remediation: Upgrade to moment@2.29.4.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the preprocessRFC2822() function in from-string.js, when processing a very long crafted string (over 10k characters).

PoC:

moment("(".repeat(500000))

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade moment to version 2.29.4 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: mongodb
  • Introduced through: connect-mongo@2.0.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 connect-mongo@2.0.1 mongodb@2.2.36
    Remediation: Upgrade to connect-mongo@3.0.0.

Overview

mongodb is an official MongoDB driver for Node.js.

Affected versions of this package are vulnerable to Denial of Service (DoS). The package fails to properly catch an exception when a collection name is invalid and the DB does not exist, crashing the application.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade mongodb to version 3.1.13 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mquery
  • Introduced through: mongoose@5.7.5

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 mongoose@5.7.5 mquery@3.2.2
    Remediation: Upgrade to mongoose@5.12.3.

Overview

mquery is an Expressive query building for MongoDB

Affected versions of this package are vulnerable to Prototype Pollution via the mergeClone() function.

PoC by zhou, peng

mquery = require('mquery');
var malicious_payload = '{"__proto__":{"polluted":"HACKED"}}';
console.log('Before:', {}.polluted); // undefined
mquery.utils.mergeClone({}, JSON.parse(malicious_payload));
console.log('After:', {}.polluted); // HACKED

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mquery to version 3.2.5 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: nth-check
  • Introduced through: nodemailer-sendgrid-transport@0.2.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 cheerio@1.0.0-rc.2 css-select@1.2.0 nth-check@1.0.2
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 ice-cap@0.0.4 cheerio@0.20.0 css-select@1.2.0 nth-check@1.0.2

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when parsing crafted invalid CSS nth-checks, due to the sub-pattern \s*(?:([+-]?)\s*(\d+))? in RE_NTH_ELEMENT with quantified overlapping adjacency.

PoC

var nthCheck = require("nth-check")
for(var i = 1; i <= 50000; i++) {
    var time = Date.now();
    var attack_str = '2n' + ' '.repeat(i*10000)+"!";
    try {
        nthCheck.parse(attack_str) 
    }
    catch(err) {
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
    }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade nth-check to version 2.0.1 or higher.

References

high severity

Improper Control of Generation of Code ('Code Injection')

  • Vulnerable module: pug-code-gen
  • Introduced through: pug@2.0.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 pug@2.0.3 pug-code-gen@2.0.3
    Remediation: Upgrade to pug@3.0.0.

Overview

pug-code-gen is a Default code-generator for pug. It generates HTML via a JavaScript template function.

Affected versions of this package are vulnerable to Improper Control of Generation of Code ('Code Injection') via the name option of the compileClient, compileFileClient, or compileClientWithDependenciesTracked functions. An attacker can execute arbitrary JavaScript code by providing untrusted input.

Note:

These functions are for compiling Pug templates into JavaScript, and there would typically be no reason to allow untrusted callers.

PoC

const express = require("express")
const pug = require("pug")
const runtimeWrap = require('pug-runtime/wrap');

const PORT = 3000

const app = express()

app.get("/", (req, res) => {
  const out = runtimeWrap(pug.compileClient('string of pug', req.query))
  res.send(out())
})

app.listen(PORT, () => {
  console.log(`Server is running on port ${PORT}`)
})

Remediation

Upgrade pug-code-gen to version 3.0.3 or higher.

References

high severity

Prototype Poisoning

  • Vulnerable module: qs
  • Introduced through: body-parser@1.18.3 and express@4.16.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 body-parser@1.18.3 qs@6.5.2
    Remediation: Upgrade to body-parser@1.19.2.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express@4.16.3 qs@6.5.1
    Remediation: Upgrade to express@4.17.3.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express@4.16.3 body-parser@1.18.2 qs@6.5.1
    Remediation: Upgrade to express@4.17.3.

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.

Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade qs to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: semver
  • Introduced through: le_node@1.8.0 and node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 le_node@1.8.0 codependency@0.1.4 semver@5.0.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 le_node@1.8.0 semver@5.1.0
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 semver@5.3.0
    Remediation: Upgrade to node-sass@5.0.0.

Overview

semver is a semantic version parser used by npm.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.

PoC


const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]

console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})

const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade semver to version 5.7.2, 6.3.1, 7.5.2 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: socket.io-parser
  • Introduced through: socket.io-client@2.1.1 and socket.io@2.1.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io-client@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io-client@2.2.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io@2.2.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 socket.io-client@2.1.1 socket.io-parser@3.2.0
    Remediation: Upgrade to socket.io@2.2.0.

Overview

socket.io-parser is a socket.io protocol parser

Affected versions of this package are vulnerable to Denial of Service (DoS) via a large packet because a concatenation approach is used.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade socket.io-parser to version 3.3.2, 3.4.1 or higher.

References

high severity

Internal Property Tampering

  • Vulnerable module: taffydb
  • Introduced through: nodemailer-sendgrid-transport@0.2.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 taffydb@2.7.3

Overview

taffydb is an open source JavaScript library that provides in-memory database capabilities

Affected versions of this package are vulnerable to Internal Property Tampering. taffy sets an internal index for each data item in its DB. However, it is found that the internal index can be forged by adding additional properties into user-input. If an index is found in the query, taffyDB will ignore other query conditions and directly return the indexed data item. Moreover, the internal index is in an easily-guessable format (e.g. T000002R000001). As such, attackers can use this vulnerability to access any data items in the DB and exploit an SQL Injection.

Note: The taffy package has been deprecated by the author. Its successor package, taffydb, is also found to be vulnerable and is not actively maintained.

PoC

var TAFFY = require('taffy');
var friends = TAFFY([
        {"id":1,"gender":"M","username":"Smith","password":"aaa","status":"Active"},
        {"id":2,"gender":"F","username":"Ruth","password":"bbb","status":"Active"},
        {"id":3,"gender":"M","username":"Stevenson","password":"ccc","status":"Active"},
        {"id":4,"gender":"F","username":"Gill","password":"ddd","status":"Active"}
]);

var json = {username:"Smith", "password":"123", "___id":"T000002R000002", "___s":true};
var item1 = friends(json);
console.log(item1.first());

Remediation

There is no fixed version for taffydb.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: trim-newlines
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 meow@3.7.0 trim-newlines@1.0.0
    Remediation: Upgrade to node-sass@6.0.1.

Overview

trim-newlines is a Trim newlines from the start and/or end of a string

Affected versions of this package are vulnerable to Denial of Service (DoS) via the end() method.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade trim-newlines to version 3.0.1, 4.0.1 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: ws
  • Introduced through: socket.io@2.1.1 and socket.io-client@2.1.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 engine.io@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io@2.3.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io-client@2.1.1 engine.io-client@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io-client@2.4.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 socket.io-client@2.1.1 engine.io-client@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io@2.4.0.

Overview

ws is a simple to use websocket client, server and console for node.js.

Affected versions of this package are vulnerable to Denial of Service (DoS) when the number of received headers exceed the server.maxHeadersCount or request.maxHeadersCount threshold.

Workaround

This issue can be mitigating by following these steps:

  1. Reduce the maximum allowed length of the request headers using the --max-http-header-size=size and/or the maxHeaderSize options so that no more headers than the server.maxHeadersCount limit can be sent.

  2. Set server.maxHeadersCount to 0 so that no limit is applied.

PoC


const http = require('http');
const WebSocket = require('ws');

const server = http.createServer();

const wss = new WebSocket.Server({ server });

server.listen(function () {
  const chars = "!#$%&'*+-.0123456789abcdefghijklmnopqrstuvwxyz^_`|~".split('');
  const headers = {};
  let count = 0;

  for (let i = 0; i < chars.length; i++) {
    if (count === 2000) break;

    for (let j = 0; j < chars.length; j++) {
      const key = chars[i] + chars[j];
      headers[key] = 'x';

      if (++count === 2000) break;
    }
  }

  headers.Connection = 'Upgrade';
  headers.Upgrade = 'websocket';
  headers['Sec-WebSocket-Key'] = 'dGhlIHNhbXBsZSBub25jZQ==';
  headers['Sec-WebSocket-Version'] = '13';

  const request = http.request({
    headers: headers,
    host: '127.0.0.1',
    port: server.address().port
  });

  request.end();
});

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade ws to version 5.2.4, 6.2.3, 7.5.10, 8.17.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: cli-table2@0.2.0, nodemailer-sendgrid-transport@0.2.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 le_node@1.8.0 lodash@4.17.11
    Remediation: Open PR to patch lodash@4.17.11.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 lodash@4.17.10
    Remediation: Upgrade to lodash@4.17.12.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The function defaultsDeep could be tricked into adding or modifying properties of Object.prototype using a constructor payload.

PoC by Snyk

const mergeFn = require('lodash').defaultsDeep;
const payload = '{"constructor": {"prototype": {"a0": true}}}'

function check() {
    mergeFn({}, JSON.parse(payload));
    if (({})[`a0`] === true) {
        console.log(`Vulnerable to Prototype Pollution via ${payload}`);
    }
  }

check();

For more information, check out our blog post

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.12 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: cli-table2@0.2.0, nodemailer-sendgrid-transport@0.2.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 le_node@1.8.0 lodash@4.17.11
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 lodash@4.17.10
    Remediation: Upgrade to lodash@4.17.17.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution via the set and setwith functions due to improper user input sanitization.

PoC

lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.17 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: cli-table2@0.2.0, nodemailer-sendgrid-transport@0.2.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 lodash@4.17.10
    Remediation: Upgrade to lodash@4.17.11.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The functions merge, mergeWith, and defaultsDeep could be tricked into adding or modifying properties of Object.prototype. This is due to an incomplete fix to CVE-2018-3721.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.11 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mquery
  • Introduced through: mongoose@5.7.5

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 mongoose@5.7.5 mquery@3.2.2
    Remediation: Upgrade to mongoose@5.11.7.

Overview

mquery is an Expressive query building for MongoDB

Affected versions of this package are vulnerable to Prototype Pollution via the merge function within lib/utils.js. Depending on if user input is provided, an attacker can overwrite and pollute the object prototype of a program.

PoC

   require('./env').getCollection(function(err, collection) {
      assert.ifError(err);
      col = collection;
      done();
    });
    var payload = JSON.parse('{"__proto__": {"polluted": "vulnerable"}}');
    var m = mquery(payload);
    console.log({}.polluted);
// The empty object {} will have a property called polluted which will print vulnerable

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mquery to version 3.2.3 or higher.

References

high severity

Access Restriction Bypass

  • Vulnerable module: xmlhttprequest-ssl
  • Introduced through: socket.io-client@2.1.1 and socket.io@2.1.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io-client@2.1.1 engine.io-client@3.2.1 xmlhttprequest-ssl@1.5.5
    Remediation: Upgrade to socket.io-client@2.2.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 socket.io-client@2.1.1 engine.io-client@3.2.1 xmlhttprequest-ssl@1.5.5
    Remediation: Upgrade to socket.io@2.2.0.

Overview

xmlhttprequest-ssl is a fork of xmlhttprequest.

Affected versions of this package are vulnerable to Access Restriction Bypass. The package disables SSL certificate validation by default, because rejectUnauthorized (when the property exists but is undefined) is considered to be false within the https.request function of Node.js. In other words, no certificate is ever rejected.

PoC

const XMLHttpRequest = require('xmlhttprequest-ssl');

var xhr = new XMLHttpRequest();		/* pass empty object in version 1.5.4 to work around bug */

xhr.open("GET", "https://self-signed.badssl.com/");
xhr.addEventListener('readystatechange', () => console.log('ready state:', xhr.status));
xhr.addEventListener('loadend', loadend);

function loadend()
{
  console.log('loadend:', xhr);
  if (xhr.status === 0 && xhr.statusText.code === 'DEPTH_ZERO_SELF_SIGNED_CERT')
    console.log('test passed: self-signed cert rejected');
  else
    console.log('*** test failed: self-signed cert used to retrieve content');
}

xhr.send();

Remediation

Upgrade xmlhttprequest-ssl to version 1.6.1 or higher.

References

high severity

Code Injection

  • Vulnerable module: lodash
  • Introduced through: cli-table2@0.2.0, nodemailer-sendgrid-transport@0.2.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 le_node@1.8.0 lodash@4.17.11
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 lodash@4.17.10
    Remediation: Upgrade to lodash@4.17.21.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Code Injection via template.

PoC

var _ = require('lodash');

_.template('', { variable: '){console.log(process.env)}; with(obj' })()

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

high severity

Cross-site Request Forgery (CSRF)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 axios@0.18.0
    Remediation: Upgrade to axios@0.28.0.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Cross-site Request Forgery (CSRF) due to inserting the X-XSRF-TOKEN header using the secret XSRF-TOKEN cookie value in all requests to any server when the XSRF-TOKEN0 cookie is available, and the withCredentials setting is turned on. If a malicious user manages to obtain this value, it can potentially lead to the XSRF defence mechanism bypass.

Workaround

Users should change the default XSRF-TOKEN cookie name in the Axios configuration and manually include the corresponding header only in the specific places where it's necessary.

Remediation

Upgrade axios to version 0.28.0, 1.6.0 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.7.5

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 mongoose@5.7.5
    Remediation: Upgrade to mongoose@5.13.15.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution in the Schema.path() function.

Note: CVE-2022-24304 is a duplicate of CVE-2022-2564.

PoC:

const mongoose = require('mongoose');
const schema = new mongoose.Schema();

malicious_payload = '__proto__.toString'

schema.path(malicious_payload, [String])

x = {}
console.log(x.toString())

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.13.15, 6.4.6 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: path-to-regexp
  • Introduced through: express@4.16.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express@4.16.3 path-to-regexp@0.1.7
    Remediation: Upgrade to express@4.20.0.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, which will produce the regular expression /^\/([^\/]+?)-([^\/]+?)\/?$/, if two parameters within a single segment are separated by a character other than a / or .. Poor performance will block the event loop and can lead to a DoS.

Note: While the 8.0.0 release has completely eliminated the vulnerable functionality, prior versions that have received the patch to mitigate backtracking may still be vulnerable if custom regular expressions are used. So it is strongly recommended for regular expression input to be controlled to avoid malicious performance degradation in those versions. This behavior is enforced as of version 7.1.0 via the strict option, which returns an error if a dangerous regular expression is detected.

Workaround

This vulnerability can be avoided by using a custom regular expression for parameters after the first in a segment, which excludes - and /.

PoC

/a${'-a'.repeat(8_000)}/a

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade path-to-regexp to version 0.1.10, 1.9.0, 3.3.0, 6.3.0, 8.0.0 or higher.

References

medium severity

Server-Side Request Forgery (SSRF)

  • Vulnerable module: ip
  • Introduced through: winston-logsene@1.2.5 and nodemailer-mailgun-transport@1.4.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 winston-logsene@1.2.5 logsene-js@1.1.77 ip@1.1.9
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-mailgun-transport@1.4.0 mailgun-js@0.18.1 proxy-agent@3.0.3 pac-proxy-agent@3.0.1 pac-resolver@3.0.0 ip@1.1.9
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-mailgun-transport@1.4.0 mailgun-js@0.18.1 proxy-agent@3.0.3 socks-proxy-agent@4.0.2 socks@2.3.3 ip@1.1.5
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-mailgun-transport@1.4.0 mailgun-js@0.18.1 proxy-agent@3.0.3 pac-proxy-agent@3.0.1 socks-proxy-agent@4.0.2 socks@2.3.3 ip@1.1.5

Overview

ip is a Node library.

Affected versions of this package are vulnerable to Server-Side Request Forgery (SSRF) via the isPublic function, which identifies some private IP addresses as public addresses due to improper parsing of the input. An attacker can manipulate a system that uses isLoopback(), isPrivate() and isPublic functions to guard outgoing network requests to treat certain IP addresses as globally routable by supplying specially crafted IP addresses.

Note

This vulnerability derived from an incomplete fix for CVE-2023-42282

Remediation

There is no fixed version for ip.

References

medium severity

Denial of Service (DoS)

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Denial of Service (DoS). Uncontrolled recursion is possible in Sass::Complex_Selector::perform in ast.hpp and Sass::Inspect::operator in inspect.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Denial of Service (DoS)

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3
    Remediation: Upgrade to node-sass@4.11.0.

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Denial of Service (DoS). Functions inside ast.cpp for IMPLEMENT_AST_OPERATORS expansion allow attackers to cause a denial-of-service resulting from stack consumption via a crafted sass file, as demonstrated by recursive calls involving clone(), cloneChildren(), and copy(). Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade node-sass to version 4.11.0 or higher.

References

medium severity

Out-of-Bounds

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-Bounds. A heap-based buffer over-read exists in Sass::Prelexer::parenthese_scope in prelexer.hpp. node-sass is affected by this vulnerability due to its bundled usage of libsass.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-Bounds

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-Bounds via Sass::Prelexer::alternatives in prelexer.hpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-bounds Read

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-bounds Read. The function handle_error in sass_context.cpp allows attackers to cause a denial-of-service resulting from a heap-based buffer over-read via a crafted sass file. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Resource Exhaustion

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3
    Remediation: Upgrade to node-sass@4.11.0.

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Resource Exhaustion. In LibSass prior to 3.5.5, Sass::Eval::operator()(Sass::Binary_Expression*) inside eval.cpp allows attackers to cause a denial-of-service resulting from stack consumption via a crafted sass file, because of certain incorrect parsing of '%' as a modulo operator in parser.cpp.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade node-sass to version 4.11.0 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: request
  • Introduced through: node-sass@4.9.3, nodemailer-sendgrid-transport@0.2.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 request@2.88.2
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 request@2.88.2
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 winston-loggly-bulk@2.0.3 node-loggly-bulk@2.2.5 request@2.88.2
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 winston-logzio@1.0.8 logzio-nodejs@0.4.18 request@2.88.2
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 ice-cap@0.0.4 cheerio@0.20.0 jsdom@7.2.2 request@2.88.2
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 request@2.87.0

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).

NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity

Uncontrolled Resource Consumption ('Resource Exhaustion')

  • Vulnerable module: tar
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Uncontrolled Resource Consumption ('Resource Exhaustion') due to the lack of folders count validation during the folder creation process. An attacker who generates a large number of sub-folders can consume memory on the system running the software and even crash the client within few seconds of running it using a path with too many sub-folders inside.

Remediation

Upgrade tar to version 6.2.1 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: tough-cookie
  • Introduced through: node-sass@4.9.3, nodemailer-sendgrid-transport@0.2.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 winston-loggly-bulk@2.0.3 node-loggly-bulk@2.2.5 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 winston-logzio@1.0.8 logzio-nodejs@0.4.18 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 ice-cap@0.0.4 cheerio@0.20.0 jsdom@7.2.2 tough-cookie@2.5.0
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 ice-cap@0.0.4 cheerio@0.20.0 jsdom@7.2.2 request@2.88.2 tough-cookie@2.5.0
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 request@2.87.0 tough-cookie@2.3.4

Overview

tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.

PoC

// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
  "Slonser=polluted; Domain=__proto__; Path=/notauth",
  "https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
  "Auth=Lol; Domain=google.com; Path=/notauth",
  "https://google.com/"
);

//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade tough-cookie to version 4.1.3 or higher.

References

medium severity

Improper Input Validation

  • Vulnerable module: xmldom
  • Introduced through: passport-twitter@1.0.4

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 passport-twitter@1.0.4 xtraverse@0.1.0 xmldom@0.1.31

Overview

xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.

Affected versions of this package are vulnerable to Improper Input Validation. It does not correctly escape special characters when serializing elements are removed from their ancestor. This may lead to unexpected syntactic changes during XML processing in some downstream applications.

Note: Customers who use "xmldom" package, should use "@xmldom/xmldom" instead, as "xmldom" is no longer maintained.

Remediation

There is no fixed version for xmldom.

References

medium severity

Prototype Pollution

  • Vulnerable module: json5
  • Introduced through: i18next-node-fs-backend@2.0.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 i18next-node-fs-backend@2.0.0 json5@2.0.0

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the parse method , which does not restrict parsing of keys named __proto__, allowing specially crafted strings to pollute the prototype of the resulting object. This pollutes the prototype of the object returned by JSON5.parse and not the global Object prototype (which is the commonly understood definition of Prototype Pollution). Therefore, the actual impact will depend on how applications utilize the returned object and how they filter unwanted keys.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade json5 to version 1.0.2, 2.2.2 or higher.

References

medium severity

  • Vulnerable module: cookie
  • Introduced through: cookie-parser@1.4.3, csurf@1.9.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 cookie-parser@1.4.3 cookie@0.3.1
    Remediation: Upgrade to cookie-parser@1.4.7.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 csurf@1.9.0 cookie@0.3.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express@4.16.3 cookie@0.3.1
    Remediation: Upgrade to express@4.21.1.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express-session@1.15.6 cookie@0.3.1
    Remediation: Upgrade to express-session@1.18.1.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 engine.io@3.2.1 cookie@0.3.1
    Remediation: Upgrade to socket.io@4.8.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express-status-monitor@1.1.5 socket.io@2.5.1 engine.io@3.6.2 cookie@0.4.2

Overview

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name, path, or domain, which can be used to set unexpected values to other cookie fields.

Workaround

Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade cookie to version 0.7.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: cli-table2@0.2.0 and nodemailer-sendgrid-transport@0.2.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 cli-table2@0.2.0 lodash@3.10.1
    Remediation: Open PR to patch lodash@3.10.1.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 lodash@3.10.1
    Remediation: Open PR to patch lodash@3.10.1.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.

PoC by Olivier Arteau (HoLyVieR)

var _= require('lodash');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';

var a = {};
console.log("Before : " + a.oops);
_.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.5 or higher.

References

medium severity

HTTP Header Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@4.6.8

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer@4.6.8
    Remediation: Upgrade to nodemailer@6.6.1.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to HTTP Header Injection if unsanitized user input that may contain newlines and carriage returns is passed into an address object.

PoC:

const userEmail = 'foo@bar.comrnSubject: foobar'; // imagine this comes from e.g. HTTP request params or is otherwise user-controllable
await transporter.sendMail({
from: '...',
to: '...',
replyTo: {
name: 'Customer',
address: userEmail,
},
subject: 'My Subject',
text: message,
});

Remediation

Upgrade nodemailer to version 6.6.1 or higher.

References

medium severity

Missing Release of Resource after Effective Lifetime

  • Vulnerable module: inflight
  • Introduced through: glob@7.1.3 and node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 glob@7.1.3 inflight@1.0.6
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 glob@7.2.3 inflight@1.0.6
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 sass-graph@2.2.6 glob@7.2.3 inflight@1.0.6
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 true-case-path@1.0.3 glob@7.2.3 inflight@1.0.6
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 gaze@1.1.3 globule@1.3.4 glob@7.1.7 inflight@1.0.6
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6

Overview

Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.

Exploiting this vulnerability results in crashing the node process or in the application crash.

Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.

To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.

PoC

const inflight = require('inflight');

function testInflight() {
  let i = 0;
  function scheduleNext() {
    let key = `key-${i++}`;
    const callback = () => {
    };
    for (let j = 0; j < 1000000; j++) {
      inflight(key, callback);
    }

    setImmediate(scheduleNext);
  }


  if (i % 100 === 0) {
    console.log(process.memoryUsage());
  }

  scheduleNext();
}

testInflight();

Remediation

There is no fixed version for inflight.

References

medium severity

Open Redirect

  • Vulnerable module: express
  • Introduced through: express@4.16.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express@4.16.3
    Remediation: Upgrade to express@4.19.2.

Overview

express is a minimalist web framework.

Affected versions of this package are vulnerable to Open Redirect due to the implementation of URL encoding using encodeurl before passing it to the location header. This can lead to unexpected evaluations of malformed URLs by common redirect allow list implementations in applications, allowing an attacker to bypass a properly implemented allow list and redirect users to malicious sites.

Remediation

Upgrade express to version 4.19.2, 5.0.0-beta.3 or higher.

References

medium severity

Server-Side Request Forgery (SSRF)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 axios@0.18.0
    Remediation: Upgrade to axios@0.21.1.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Server-Side Request Forgery (SSRF). An attacker is able to bypass a proxy by providing a URL that responds with a redirect to a restricted host or IP address.

Remediation

Upgrade axios to version 0.21.1 or higher.

References

medium severity

Denial of Service (DoS)

  • Vulnerable module: js-yaml
  • Introduced through: i18next-node-fs-backend@2.0.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 i18next-node-fs-backend@2.0.0 js-yaml@3.12.0
    Remediation: Upgrade to i18next-node-fs-backend@2.1.2.

Overview

js-yaml is a human-friendly data serialization language.

Affected versions of this package are vulnerable to Denial of Service (DoS). The parsing of a specially crafted YAML file may exhaust the system resources.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade js-yaml to version 3.13.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: nodemailer-sendgrid-transport@0.2.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 marked@0.3.19

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The em regex within src/rules.js file have multiple unused capture groups which could lead to a denial of service attack if user input is reachable.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 1.1.1 or higher.

References

medium severity

Denial of Service (DoS)

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3
    Remediation: Upgrade to node-sass@4.13.1.

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Denial of Service (DoS). Crafted objects passed to the renderSync function may trigger C++ assertions in CustomImporterBridge::get_importer_entry and CustomImporterBridge::post_process_return_value that crash the Node process. This may allow attackers to crash the system's running Node process and lead to Denial of Service.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade node-sass to version 4.13.1 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: minimist
  • Introduced through: mkdirp@0.5.1, nodemailer-html-to-text@3.0.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 mkdirp@0.5.1 minimist@0.0.8
    Remediation: Upgrade to mkdirp@0.5.2.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-html-to-text@3.0.0 html-to-text@4.0.0 optimist@0.6.1 minimist@0.0.10
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 minimist@1.2.0

Overview

minimist is a parse argument options module.

Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a constructor or __proto__ payload.

PoC by Snyk

require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true

require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade minimist to version 0.2.1, 1.2.3 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: mongoose
  • Introduced through: mongoose@5.7.5

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 mongoose@5.7.5
    Remediation: Upgrade to mongoose@5.12.2.

Overview

mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.

Affected versions of this package are vulnerable to Prototype Pollution. The mongoose.Schema() function is subject to prototype pollution due to the recursively calling of Schema.prototype.add() function to add new items into the schema object. This vulnerability allows modification of the Object prototype.

PoC

mongoose = require('mongoose');
mongoose.version; //'5.12.0'
var malicious_payload = '{"__proto__":{"polluted":"HACKED"}}';
console.log('Before:', {}.polluted); // undefined
mongoose.Schema(JSON.parse(malicious_payload));
console.log('After:', {}.polluted); // HACKED

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mongoose to version 5.12.2 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: mpath
  • Introduced through: mongoose@5.7.5

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 mongoose@5.7.5 mpath@0.6.0
    Remediation: Upgrade to mongoose@5.13.9.

Overview

mpath is a package that gets/sets javascript object values using MongoDB-like path notation.

Affected versions of this package are vulnerable to Prototype Pollution. A type confusion vulnerability can lead to a bypass of CVE-2018-16490. In particular, the condition ignoreProperties.indexOf(parts[i]) !== -1 returns -1 if parts[i] is ['__proto__']. This is because the method that has been called if the input is an array is Array.prototype.indexOf() and not String.prototype.indexOf(). They behave differently depending on the type of the input.

PoC

const mpath = require('mpath');
// mpath.set(['__proto__', 'polluted'], 'yes', {});
// console.log(polluted); // ReferenceError: polluted is not defined

mpath.set([['__proto__'], 'polluted'], 'yes', {});
console.log(polluted); // yes

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade mpath to version 0.8.4 or higher.

References

medium severity

XML External Entity (XXE) Injection

  • Vulnerable module: xmldom
  • Introduced through: passport-twitter@1.0.4

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 passport-twitter@1.0.4 xtraverse@0.1.0 xmldom@0.1.31

Overview

xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.

Affected versions of this package are vulnerable to XML External Entity (XXE) Injection. Does not correctly preserve system identifiers, FPIs or namespaces when repeatedly parsing and serializing maliciously crafted documents.

Details

XXE Injection is a type of attack against an application that parses XML input. XML is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. By default, many XML processors allow specification of an external entity, a URI that is dereferenced and evaluated during XML processing. When an XML document is being parsed, the parser can make a request and include the content at the specified URI inside of the XML document.

Attacks can include disclosing local files, which may contain sensitive data such as passwords or private user data, using file: schemes or relative paths in the system identifier.

For example, below is a sample XML document, containing an XML element- username.

<xml>
<?xml version="1.0" encoding="ISO-8859-1"?>
   <username>John</username>
</xml>

An external XML entity - xxe, is defined using a system identifier and present within a DOCTYPE header. These entities can access local or remote content. For example the below code contains an external XML entity that would fetch the content of /etc/passwd and display it to the user rendered by username.

<xml>
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
   <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
   <username>&xxe;</username>
</xml>

Other XXE Injection attacks can access local resources that may not stop returning data, possibly impacting application availability and leading to Denial of Service.

Remediation

Upgrade xmldom to version 0.5.0 or higher.

References

medium severity

Denial of Service (DoS)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 axios@0.18.0
    Remediation: Upgrade to axios@0.18.1.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Denial of Service (DoS) due to content continuing to be accepted from requests after maxContentLength is exceeded.

PoC

require('axios').get(
  'https://upload.wikimedia.org/wikipedia/commons/f/fe/A_Different_Slant_on_Carina.jpg',
  { maxContentLength: 2000 }
)
  .then(d => console.log('done'))
  .catch(e => console.log(e.toString()))

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade axios to version 0.18.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: axios
  • Introduced through: axios@0.18.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 axios@0.18.0
    Remediation: Upgrade to axios@1.6.3.

Overview

axios is a promise-based HTTP client for the browser and Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). An attacker can deplete system resources by providing a manipulated string as input to the format method, causing the regular expression to exhibit a time complexity of O(n^2). This makes the server to become unable to provide normal service due to the excessive cost and time wasted in processing vulnerable regular expressions.

PoC

const axios = require('axios');

console.time('t1');
axios.defaults.baseURL = '/'.repeat(10000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t1');

console.time('t2');
axios.defaults.baseURL = '/'.repeat(100000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t2');


/* stdout
t1: 60.826ms
t2: 5.826s
*/

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade axios to version 1.6.3 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: lodash
  • Introduced through: cli-table2@0.2.0, nodemailer-sendgrid-transport@0.2.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 le_node@1.8.0 lodash@4.17.11
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 lodash@4.17.10
    Remediation: Upgrade to lodash@4.17.21.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber, trim and trimEnd functions.

POC

var lo = require('lodash');

function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}

return ret + "1";
}

var s = build_blank(50000)
var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0)

var time1 = Date.now();
lo.toNumber(s)
var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1)

var time2 = Date.now();
lo.trimEnd(s)
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2)

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: nodemailer-sendgrid-transport@0.2.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 marked@0.3.19

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The inline.text regex may take quadratic time to scan for potential email addresses starting at every point.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 0.6.2 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: nodemailer-sendgrid-transport@0.2.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 marked@0.3.19

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when passing unsanitized user input to inline.reflinkSearch, if it is not being parsed by a time-limited worker thread.

PoC

import * as marked from 'marked';

console.log(marked.parse(`[x]: x

\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](\\[\\](`));

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 4.0.10 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: nodemailer-sendgrid-transport@0.2.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 marked@0.3.19

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when unsanitized user input is passed to block.def.

PoC

import * as marked from "marked";
marked.parse(`[x]:${' '.repeat(1500)}x ${' '.repeat(1500)} x`);

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 4.0.10 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: marked
  • Introduced through: nodemailer-sendgrid-transport@0.2.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 marked@0.3.19

Overview

marked is a low-level compiler for parsing markdown without caching or blocking for long periods of time.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). A Denial of Service condition could be triggered through exploitation of the heading regex.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade marked to version 0.4.0 or higher.

References

medium severity

Improper Certificate Validation

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3
    Remediation: Upgrade to node-sass@7.0.0.

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Improper Certificate Validation. Certificate validation is disabled by default when requesting binaries, even if the user is not specifying an alternative download path.

Remediation

Upgrade node-sass to version 7.0.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@4.6.8

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer@4.6.8
    Remediation: Upgrade to nodemailer@6.9.9.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the attachDataUrls parameter or when parsing attachments with an embedded file. An attacker can exploit this vulnerability by sending a specially crafted email that triggers inefficient regular expression evaluation, leading to excessive consumption of CPU resources.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade nodemailer to version 6.9.9 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: scss-tokenizer
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 sass-graph@2.2.6 scss-tokenizer@0.2.3
    Remediation: Upgrade to node-sass@7.0.2.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the loadAnnotation() function, due to the usage of insecure regex.

PoC

var scss = require("scss-tokenizer")
function build_attack(n) {
    var ret = "a{}"
    for (var i = 0; i < n; i++) {
        ret += "/*# sourceMappingURL="
    }
    return ret + "!";
}

// postcss.parse('a{}/*# sourceMappingURL=a.css.map */')
for(var i = 1; i <= 500000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        try{
            scss.tokenize(attack_str)
            var time_cost = Date.now() - time;
            console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
            }
        catch(e){
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
        }
    }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade scss-tokenizer to version 0.4.3 or higher.

References

medium severity

Insecure Defaults

  • Vulnerable module: socket.io
  • Introduced through: socket.io@2.1.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1
    Remediation: Upgrade to socket.io@2.4.0.

Overview

socket.io is a node.js realtime framework server.

Affected versions of this package are vulnerable to Insecure Defaults due to CORS Misconfiguration. All domains are whitelisted by default.

Remediation

Upgrade socket.io to version 2.4.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: uglify-js
  • Introduced through: pug@2.0.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 pug@2.0.3 pug-filters@3.1.1 uglify-js@2.8.29
    Remediation: Upgrade to pug@3.0.0.

Overview

uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the string_template and the decode_template functions.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade uglify-js to version 3.14.3 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: express-validator@6.0.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express-validator@6.0.0 validator@11.1.0
    Remediation: Upgrade to express-validator@6.5.0.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isSlug function

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "111"
    for (var i = 0; i < n; i++) {
        ret += "a"
    }

    return ret+"_";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isSlug(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: express-validator@6.0.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express-validator@6.0.0 validator@11.1.0
    Remediation: Upgrade to express-validator@6.5.0.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the rtrim function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = ""
    for (var i = 0; i < n; i++) {
        ret += " "
    }

    return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.rtrim(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.7.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: express-validator@6.0.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express-validator@6.0.0 validator@11.1.0
    Remediation: Upgrade to express-validator@6.5.0.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isHSL function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "hsla(0"
    for (var i = 0; i < n; i++) {
        ret += " "
    }

    return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isHSL(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: express-validator@6.0.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express-validator@6.0.0 validator@11.1.0
    Remediation: Upgrade to express-validator@6.5.0.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isEmail function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = ""
    for (var i = 0; i < n; i++) {
        ret += "<"
    }

    return ret+"";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        validator.isEmail(attack_str,{ allow_display_name: true })
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ws
  • Introduced through: socket.io@2.1.1 and socket.io-client@2.1.1

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 engine.io@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io@2.3.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io-client@2.1.1 engine.io-client@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io-client@2.4.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 socket.io@2.1.1 socket.io-client@2.1.1 engine.io-client@3.2.1 ws@3.3.3
    Remediation: Upgrade to socket.io@2.4.0.

Overview

ws is a simple to use websocket client, server and console for node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). A specially crafted value of the Sec-Websocket-Protocol header can be used to significantly slow down a ws server.

##PoC

for (const length of [1000, 2000, 4000, 8000, 16000, 32000]) {
  const value = 'b' + ' '.repeat(length) + 'x';
  const start = process.hrtime.bigint();

  value.trim().split(/ *, */);

  const end = process.hrtime.bigint();

  console.log('length = %d, time = %f ns', length, end - start);
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ws to version 7.4.6, 6.2.2, 5.2.3 or higher.

References

medium severity

Cross-site Scripting

  • Vulnerable module: express
  • Introduced through: express@4.16.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express@4.16.3
    Remediation: Upgrade to express@4.20.0.

Overview

express is a minimalist web framework.

Affected versions of this package are vulnerable to Cross-site Scripting due to improper handling of user input in the response.redirect method. An attacker can execute arbitrary code by passing malicious input to this method.

Note

To exploit this vulnerability, the following conditions are required:

  1. The attacker should be able to control the input to response.redirect()

  2. express must not redirect before the template appears

  3. the browser must not complete redirection before:

  4. the user must click on the link in the template

Remediation

Upgrade express to version 4.20.0, 5.0.0 or higher.

References

medium severity

Buffer Overflow

  • Vulnerable module: i18next
  • Introduced through: i18next@11.6.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 i18next@11.6.0
    Remediation: Upgrade to i18next@19.5.5.

Overview

i18next is an internationalization framework for browser or any other javascript environment (eg. node.js).

Affected versions of this package are vulnerable to Buffer Overflow. It is possible to cause buffer overflow by changing the translation to be recursive.

Remediation

Upgrade i18next to version 19.5.5 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: i18next
  • Introduced through: i18next@11.6.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 i18next@11.6.0
    Remediation: Upgrade to i18next@19.8.3.

Overview

i18next is an internationalization framework for browser or any other javascript environment (eg. node.js).

Affected versions of this package are vulnerable to Prototype Pollution. This vulnerability relates to the AddResourceBundle API which uses the the deepExtend function (https://github.com/i18next/i18next/blob/master/i18next.js#L361-L370) internally to extend existing translations in a file. Depending on if user input is provided, an attacker can overwrite and pollute the object prototype of a program.

PoC

import i18n from "i18next";
i18n.init({
    resources: {
      en: {
        namespace1: {
          key: 'hello from namespace 1'
        },
        namespace2: {
          key: 'hello from namespace 2'
        }
      },
      de: {
        namespace1: {
          key: 'hallo von namespace 1'
        },
        namespace2: {
          key: 'hallo von namespace 2'
        }  
      }
    }
  });

  var malicious_payload = '{"__proto__":{"vulnerable":"Polluted"}}';
  i18n.init({ resources: {} });
  i18n.addResourceBundle('en', 'namespace1', JSON.parse(malicious_payload)
  ,true,true);
 
 
console.log(i18n.options.resources);
//a newly created empty object has the vulnerable property
console.log({}.vulnerable);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade i18next to version 19.8.3 or higher.

References

medium severity

Session Fixation

  • Vulnerable module: passport
  • Introduced through: passport@0.4.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 passport@0.4.0
    Remediation: Upgrade to passport@0.6.0.

Overview

passport is a Simple, unobtrusive authentication for Node.js.

Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.

Remediation

Upgrade passport to version 0.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: lodash
  • Introduced through: cli-table2@0.2.0, nodemailer-sendgrid-transport@0.2.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 cli-table2@0.2.0 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 lodash@3.10.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 lodash@4.17.10
    Remediation: Upgrade to lodash@4.17.11.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It parses dates using regex strings, which may cause a slowdown of 2 seconds per 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade lodash to version 4.17.11 or higher.

References

medium severity

NULL Pointer Dereference

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to NULL Pointer Dereference via Sass::Parser::parseCompoundSelectorin parser_selectors.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Remediation

There is no fixed version for node-sass.

References

medium severity

Out-of-bounds Read

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Out-of-bounds Read via Sass::weaveParents in ast_sel_weave.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

There is no fixed version for node-sass.

References

medium severity

Uncontrolled Recursion

  • Vulnerable module: node-sass
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3

Overview

node-sass is a Node.js bindings package for libsass.

Affected versions of this package are vulnerable to Uncontrolled Recursion via Sass::Eval::operator()(Sass::Binary_Expression*) in eval.cpp. Note: node-sass is affected by this vulnerability due to its bundled usage of the libsass package.

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

There is no fixed version for node-sass.

References

medium severity

Prototype Pollution

  • Vulnerable module: ioredis
  • Introduced through: ioredis@4.0.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 ioredis@4.0.0
    Remediation: Upgrade to ioredis@4.27.8.

Overview

ioredis is a Redis client for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution. The reply transformer which is applied does not check for special field names. This only impacts applications that are directly allowing user-provided field names.

PoC

// Redis server running on localhost
const Redis = require("ioredis");
const client = new Redis();

async function f1() {
        await client.hset('test_key', ['__proto__', 'hello']);
        console.log('hget:', await client.hget('test_key', '__proto__')); // "hello"
        console.log('hgetall:', await client.hgetall('test_key')); // does not include __proto__: hello
}

f1();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade ioredis to version 4.27.8 or higher.

References

low severity

Information Exposure

  • Vulnerable module: apollo-server-core
  • Introduced through: graphql-server-express@1.4.0

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 graphql-server-express@1.4.0 apollo-server-express@1.4.0 apollo-server-core@1.4.0

Overview

apollo-server-core is a core module of the Apollo community GraphQL Server.

Affected versions of this package are vulnerable to Information Exposure when it can log sensitive information, such as Studio API keys, if they are passed incorrectly with leading/trailing whitespace or if they have any characters that are invalid as part of a header value.

Note Users are affected only if all the conditions are true:

  • Use either the schema reporting or usage reporting feature.

  • Use an Apollo Studio API key which has invalid header values.

  • Use the default fetcher (node-fetch) or configure their own node-fetch fetcher

Workaround

  1. Try retrieving a new API key from Studio. Note: This may not work if the invalid character is not part of the secret (it may be derived from identifiers like graph name, user name).

  2. Override the fetcher

  3. Disable schema reporting and/or usage reporting

Remediation

Upgrade apollo-server-core to version 2.26.1, 3.12.1 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: debug
  • Introduced through: express-status-monitor@1.1.5

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express-status-monitor@1.1.5 socket.io@2.5.1 debug@4.1.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express-status-monitor@1.1.5 socket.io@2.5.1 engine.io@3.6.2 debug@4.1.1
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express-status-monitor@1.1.5 socket.io@2.5.1 socket.io-parser@3.4.3 debug@4.1.1

Overview

debug is a small debugging utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the function useColors via manipulation of the str argument. The vulnerability can cause a very low impact of about 2 seconds of matching time for data 50k characters long.

Note: CVE-2017-20165 is a duplicate of this vulnerability.

PoC

Use the following regex in the %o formatter.

/\s*\n\s*/

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade debug to version 2.6.9, 3.1.0, 3.2.7, 4.3.1 or higher.

References

low severity

Prototype Pollution

  • Vulnerable module: minimist
  • Introduced through: mkdirp@0.5.1, nodemailer-html-to-text@3.0.0 and others

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 mkdirp@0.5.1 minimist@0.0.8
    Remediation: Upgrade to mkdirp@0.5.2.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-html-to-text@3.0.0 html-to-text@4.0.0 optimist@0.6.1 minimist@0.0.10
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 nodemailer-sendgrid-transport@0.2.0 sendgrid@1.9.2 smtpapi@1.4.7 esdoc@1.1.0 minimist@1.2.0

Overview

minimist is a parse argument options module.

Affected versions of this package are vulnerable to Prototype Pollution due to a missing handler to Function.prototype.

Notes:

  • This vulnerability is a bypass to CVE-2020-7598

  • The reason for the different CVSS between CVE-2021-44906 to CVE-2020-7598, is that CVE-2020-7598 can pollute objects, while CVE-2021-44906 can pollute only function.

PoC by Snyk

require('minimist')('--_.constructor.constructor.prototype.foo bar'.split(' '));
console.log((function(){}).foo); // bar

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade minimist to version 0.2.4, 1.2.6 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: tar
  • Introduced through: node-sass@4.9.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 node-sass@4.9.3 node-gyp@3.8.0 tar@2.2.2
    Remediation: Upgrade to node-sass@5.0.0.

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). When stripping the trailing slash from files arguments, the f.replace(/\/+$/, '') performance of this function can exponentially degrade when f contains many / characters resulting in ReDoS.

This vulnerability is not likely to be exploitable as it requires that the untrusted input is being passed into the tar.extract() or tar.list() array of entries to parse/extract, which would be unusual.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade tar to version 6.1.4, 5.0.8, 4.4.16 or higher.

References

low severity

Cross-site Scripting

  • Vulnerable module: send
  • Introduced through: express@4.16.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express@4.16.3 send@0.16.2
    Remediation: Upgrade to express@4.20.0.
  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express@4.16.3 serve-static@1.13.2 send@0.16.2
    Remediation: Upgrade to express@4.21.0.

Overview

send is a Better streaming static file server with Range and conditional-GET support

Affected versions of this package are vulnerable to Cross-site Scripting due to improper user input sanitization passed to the SendStream.redirect() function, which executes untrusted code. An attacker can execute arbitrary code by manipulating the input parameters to this method.

Note:

Exploiting this vulnerability requires the following:

  1. The attacker needs to control the input to response.redirect()

  2. Express MUST NOT redirect before the template appears

  3. The browser MUST NOT complete redirection before

  4. The user MUST click on the link in the template

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade send to version 0.19.0, 1.1.0 or higher.

References

low severity

Cross-site Scripting

  • Vulnerable module: serve-static
  • Introduced through: express@4.16.3

Detailed paths

  • Introduced through: vue-express-mongo-boilerplate@icebob/vue-express-mongo-boilerplate#fd48e4af64ec76cb03ccb0c86d3919732f149938 express@4.16.3 serve-static@1.13.2
    Remediation: Upgrade to express@4.20.0.

Overview

serve-static is a server.

Affected versions of this package are vulnerable to Cross-site Scripting due to improper sanitization of user input in the redirect function. An attacker can manipulate the redirection process by injecting malicious code into the input.

Note

To exploit this vulnerability, the following conditions are required:

  1. The attacker should be able to control the input to response.redirect()

  2. express must not redirect before the template appears

  3. the browser must not complete redirection before:

  4. the user must click on the link in the template

Details

A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade serve-static to version 1.16.0, 2.1.0 or higher.

References