Find, fix and prevent vulnerabilities in your code.
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.6.8.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation via Mojo. If the endpoint's task runner does not match the current task runner (or an equivalent main-thread task runner for the ChannelProxy) when executing a message dispatch task for that endpoint, it dispatches it on the wrong sequence.
Remediation
Upgrade electron
to version 13.6.8, 14.2.4, 15.3.5 or higher.
References
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds via the V8 component in Chrome.
Remediation
Upgrade electron
to version 11.4.4, 10.4.4, 12.0.6 or higher.
References
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Write via ANGLE in Chrome.
Remediation
Upgrade electron
to version 12.0.13, 11.4.10 or higher.
References
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion via the V8 module in Chromium.
Remediation
Upgrade electron
to version 14.2.1, 13.6.2, 12.2.3 or higher.
References
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in V8 Turbofan, exploiting this vulnerability is possible via a crafted HTML page.
Remediation
Upgrade electron
to version 15.5.3, 16.2.4, 17.4.2 or higher.
References
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. An unknown vunerability exists in Chrome.
Remediation
Upgrade electron
to version 9.4.1, 10.3.2 or higher.
References
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.2.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via handling of cookies.
Remediation
Upgrade electron
to version 9.4.2, 10.3.1, 11.2.2 or higher.
References
critical severity
- Vulnerable module: xmldom
- Introduced through: electron-packager@9.1.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › plist@2.1.0 › xmldom@0.1.31
Overview
xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.
Affected versions of this package are vulnerable to Improper Input Validation due to parsing XML that is not well-formed, and contains multiple top-level elements. All the root nodes are being added to the childNodes
collection of the Document
, without reporting or throwing any error.
Workarounds
One of the following approaches might help, depending on your use case:
Instead of searching for elements in the whole DOM, only search in the
documentElement
.Reject a document with a document that has more than 1
childNode
.
PoC
var DOMParser = require('xmldom').DOMParser;
var xmlData = '<?xml version="1.0" encoding="UTF-8"?>\n' +
'<root>\n' +
' <branch girth="large">\n' +
' <leaf color="green" />\n' +
' </branch>\n' +
'</root>\n' +
'<root>\n' +
' <branch girth="twig">\n' +
' <leaf color="gold" />\n' +
' </branch>\n' +
'</root>\n';
var xmlDOM = new DOMParser().parseFromString(xmlData);
console.log(xmlDOM.toString());
This will result with the following output:
<?xml version="1.0" encoding="UTF-8"?><root>
<branch girth="large">
<leaf color="green"/>
</branch>
</root>
<root>
<branch girth="twig">
<leaf color="gold"/>
</branch>
</root>
Remediation
There is no fixed version for xmldom
.
References
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.9.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion due to a flaw in the WebAssembly component. An attacker can execute arbitrary code on the victim's machine by convincing them to visit a maliciously crafted HTML page.
Remediation
Upgrade electron
to version 27.3.9, 28.2.10, 29.2.0 or higher.
References
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Mojo
interface. An attacker can potentially exploit heap corruption by delivering a crafted HTML page.
Remediation
Upgrade electron
to version 27.3.3 or higher.
References
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.9.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free due to improper handling of objects in memory in the ANGLE graphics engine. An attacker can cause heap corruption and potentially execute arbitrary code by convincing a user to visit a specially crafted HTML page.
Remediation
Upgrade electron
to version 27.3.9, 28.2.10, 29.2.0 or higher.
References
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion via crafted HTML content.
Remediation
Upgrade electron
to version 31.7.1, 32.2.1 or higher.
References
critical severity
- Vulnerable module: babel-traverse
- Introduced through: babel-core@6.26.3, babel-cli@6.26.0 and others
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-plugin-istanbul@4.1.6 › istanbul-lib-instrument@1.10.2 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-plugin-istanbul@4.1.6 › istanbul-lib-instrument@1.10.2 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-exponentiation-operator@6.24.1 › babel-helper-builder-binary-assignment-operator-visitor@6.24.1 › babel-helper-explode-assignable-expression@6.24.1 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0
Overview
Affected versions of this package are vulnerable to Incomplete List of Disallowed Inputs when using plugins that rely on the path.evaluate()
or path.evaluateTruthy()
internal Babel methods.
Note:
This is only exploitable if the attacker uses known affected plugins such as @babel/plugin-transform-runtime
, @babel/preset-env
when using its useBuiltIns
option, and any "polyfill provider" plugin that depends on @babel/helper-define-polyfill-provider
. No other plugins under the @babel/
namespace are impacted, but third-party plugins might be.
Users that only compile trusted code are not impacted.
Workaround
Users who are unable to upgrade the library can upgrade the affected plugins instead, to avoid triggering the vulnerable code path in affected @babel/traverse
.
Remediation
There is no fixed version for babel-traverse
.
References
critical severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-Bounds Write via the V8 engine. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.9.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Access of Resource Using Incompatible Type ('Type Confusion'). Type confusion in V8 in Google Chrome allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 12.0.12, 11.4.9 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Access Restriction Bypass in Blink.
Remediation
Upgrade electron
to version 13.5.0, 12.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap Buffer Overflow via WebAudio.
Remediation
Upgrade electron
to version 11.4.0, 10.4.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap Overflow. A Heap buffer overflow exists in the media component of Google Chrome, which also affects chromium.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.2.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow. A heap buffer overflow flaw was found in the UI component of the Chromium browser.
Remediation
Upgrade electron
to version 9.4.0, 10.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow via the WebRTC module in Chromium.
Remediation
Upgrade electron
to version 14.2.0, 13.5.2, 12.2.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@26.6.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in the ANGLE component.
Remediation
Upgrade electron
to version 26.6.5, 27.2.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow via a crafted HTML page. An attacker can potentially exploit heap corruption by deceiving a user to visit a malicious web page.
Remediation
Upgrade electron
to version 27.3.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in the ANGLE component. An attacker can potentially exploit heap corruption through a crafted HTML page.
Remediation
Upgrade electron
to version 27.3.11, 28.3.1, 29.3.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow through the WebRTC
component. An attacker can cause heap corruption and potentially execute arbitrary code by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.4.3, 30.1.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Access Control. An insufficient policy enforcement flaw was found in the networking component of chromium.
Remediation
Upgrade electron
to version 9.4.0, 10.1.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Access Control. It has an inappropriate implementation in V8.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.2.1 or higher.
References
high severity
new
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Access Control due to an inappropriate implementation in Extensions. An attacker can bypass site isolation.
Remediation
Upgrade electron
to version 31.7.4, 32.2.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation. An insufficient data validation flaw was found in the WASM component of the Chromium browser.
Remediation
Upgrade electron
to version 9.4.0, 10.1.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.3.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Restriction of Operations within the Bounds of a Memory Buffer due to an inappropriate implementation in the V8 engine. An attacker can potentially perform out of bounds memory access by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.3.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Integer Overflow or Wraparound via the Mojo
component of chromium.
Remediation
Upgrade electron
to version 10.4.4, 12.0.6 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@14.2.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Integer Overflow or Wraparound due to handle reuse in Mojo
.
Remediation
Upgrade electron
to version 14.2.7, 15.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@14.2.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Interger Underflow in ANGLE. A remote attacker could potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 14.2.5, 15.3.6 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-Bounds. Object lifecycle issue in audio.
Remediation
Upgrade electron
to version 11.4.0, 10.4.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@26.6.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Read allowing a remote attacker to exploit heap corruption via a crafted HTML page.
Note: The Stable channel has been updated to 120.0.6099.234 for Mac devices.
Remediation
Upgrade electron
to version 26.6.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Read through the V8
engine. An attacker can access memory locations outside of the intended boundary by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Read via a crafted HTML page. An attacker can access memory locations outside the intended boundary by crafting a malicious HTML page that triggers the flaw.
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Write via a data race in the audio component. A remote attacker could potentially exploit heap corruption using a crafted HTML page.
Remediation
Upgrade electron
to version 10.4.1, 11.4.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-Bounds Write through the Streams API
. An attacker can execute arbitrary code within a sandboxed environment by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Privilege Context Switching Error in libuv
's handling of io_uring
operations called before calling setuid()
. This allows users to elevate privileges.
Remediation
Upgrade electron
to version 29.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in V8.
Remediation
Upgrade electron
to version 12.0.10, 11.4.8, 10.4.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in V8 via Chrome.
Remediation
Upgrade electron
to version 12.0.16, 11.4.11 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion via Blink layout in Chrome.
Remediation
Upgrade electron
to version 13.5.0, 12.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.6.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in V8. This allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 13.6.3, 14.2.2, 15.3.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.6.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in loader
in Google Chrome. This can lead to heap corruption which is exploited through a crafted HTML page.
Remediation
Upgrade electron
to version 13.6.6, 14.2.4, 15.3.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.6.8.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in V8 in Google Chrome allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 13.6.8, 14.2.5, 15.3.6 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@17.4.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in V8.
Remediation
Upgrade electron
to version 17.4.11, 18.3.6 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@19.1.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in V8.
Remediation
Upgrade electron
to version 19.1.5, 20.3.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@7.3.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in V8.
Remediation
Upgrade electron
to version 7.3.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion due to the V8
process. An attacker can potentially perform arbitrary read/write by exploiting a crafted HTML page.
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@8.5.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the site isolation.
Remediation
Upgrade electron
to version 8.5.4, 9.3.5, 10.1.6 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. A use after free flaw was found in the PPAPI component of the Chromium browser.
Remediation
Upgrade electron
to version 9.4.0, 10.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Media.
Remediation
Upgrade electron
to version 11.2.1, 9.4.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. It hands sub-queries with both a correlated WHERE
clause and a HAVING 0
clause where the parent query is itself an aggregate.
Remediation
Upgrade electron
to version 11.2.1, 9.4.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. When a LayoutInline
is removed, LineBoxList::DirtyLinesFromChangedChild
tries to mark affected
RootInlineBox
dirty.
When the |LayoutInline| to be removed is culled, it tries to find the RootInlineBox
from its previous siblings, then look for its previous and next RootInlineBox
es.
Occasionally, the next next line of the previous sibling is wrapped at the LayoutInline
, and that its LineBreakObj()
holds the reference to the LayoutInline
. This patch marks such RootInlineBox
dirty.
Remediation
Upgrade electron
to version 11.4.0, 10.4.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.1.
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. It allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 10.4.2, 11.4.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via a vulnerability that exists in Blink in Chromium. A remote attacker can trick the victim to visit a specially crafted web page, trigger a use-after-free error and execute arbitrary code on the system.
Remediation
Upgrade electron
to version 11.4.4, 10.4.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via Chrome which allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 12.0.5, 11.4.4, 10.4.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via chromium which allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 12.0.5, 11.4.4, 10.4.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via Aura in Google Chrome which allowed a remote attacker who had compromised the renderer process to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 12.0.5, 11.4.4, 10.4.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Navigation component of chromium.
Remediation
Upgrade electron
to version 10.4.4, 11.4.4, 12.0.6 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in the chromium
extensions resource.
Remediation
Upgrade electron
to version 11.4.4, 10.4.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in File API.
Remediation
Upgrade electron
to version 12.0.10, 11.4.8, 10.4.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Notifications.
Remediation
Upgrade electron
to version 12.0.10, 11.4.8, 10.4.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.9.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. Use after free in Loader in Google Chrome allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 12.0.12, 11.4.9 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.9.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in BFCache in Google Chrome, which allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 12.0.13, 11.4.9 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in WebGL.
Remediation
Upgrade electron
to version 12.0.13, 11.4.10 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in WebRTC.
Remediation
Upgrade electron
to version 12.0.14, 11.4.10 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in WebAudio
.
Remediation
Upgrade electron
to version 12.0.14, 11.4.10 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Blink XSLT.
Remediation
Upgrade electron
to version 12.0.16, 11.4.11 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in WebSerial via Chrome.
Remediation
Upgrade electron
to version 12.0.16, 11.4.11 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in V8 via Chrome.
Remediation
Upgrade electron
to version 12.0.16, 11.4.11 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in GPU.
Remediation
Upgrade electron
to version 13.1.8, 12.0.16, 11.4.11 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Autofill.
Remediation
Upgrade electron
to version 12.0.16, 11.4.11 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Indexed DB API.
Remediation
Upgrade electron
to version 13.5.0, 12.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@2.0.18.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Chromium FileReader.
Note: This vulnerability affects all software based on Chromium, including Electron.
Remediation
Upgrade electron
to version 2.0.18, 3.0.16, 3.1.6, 4.0.8 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via heap corruption through a crafted HTML page.
Remediation
Upgrade electron
to version 14.1.1, 13.5.2, 12.2.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in the file system API, through a heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 14.1.1, 13.5.2, 12.2.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Garbage Collection module in Chromium.
Remediation
Upgrade electron
to version 14.2.1, 13.6.2, 12.2.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.6.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Web Transport module in Chromium.
Remediation
Upgrade electron
to version 14.2.1, 13.6.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.6.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in loader
in Google Chrome. This allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 13.6.3, 14.2.2, 15.3.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@16.0.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in the storage foundation, which allows a remote attacker to potentially exploit heap corruption via a crafted HTML page
Remediation
Upgrade electron
to version 16.0.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.3.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in media in Google Chrome which allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 15.3.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.6.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via file API in Google Chrome prior to 96.0.4664.93. It allows a remote attacker who have compromised the renderer process to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 13.6.6, 14.2.4, 15.3.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@14.2.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free on context loss.
Remediation
Upgrade electron
to version 14.2.7, 15.4.0, 16.0.10 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@14.2.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free when the source framebuffer's extents were accidentally used instead of the blit area extents.
Remediation
Upgrade electron
to version 14.2.7, 15.4.0, 16.0.10 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@16.2.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in the BFCache
, due to the attempts to cache an interstitial which results in a crash.
Remediation
Upgrade electron
to version 16.2.4, 17.4.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in regular expressions (V8).
Remediation
Upgrade electron
to version 15.5.3, 16.2.4, 17.4.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Angle, when pausing XFB
then deleting a buffer.
Remediation
Upgrade electron
to version 15.5.4, 16.2.6, 17.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Vulkan.
Remediation
Upgrade electron
to version 15.5.6, 16.2.6, 17.4.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@16.2.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in File System API.
Remediation
Upgrade electron
to version 16.2.6, 17.4.3, 18.2.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in SwiftShader.
Remediation
Upgrade electron
to version 15.5.4, 16.2.5, 17.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free due to improper cache state validation after the XFB buffer was deleted.
Remediation
Upgrade electron
to version 15.5.6, 16.2.7, 17.4.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@17.4.8.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Angle.
Remediation
Upgrade electron
to version 17.4.8, 18.3.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free when glBufferData
redefines a buffer and the new buffer is smaller than the old buffer.
Remediation
Upgrade electron
to version 18.3.11, 19.0.15 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Blink
, when a DisplayLock
is unlocked via ForceUnlockIfNeeded
.
Remediation
Upgrade electron
to version 18.3.11 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@19.0.15.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in SwiftShader.
Remediation
Upgrade electron
to version 19.0.15 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.14.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in WebSQL
Remediation
Upgrade electron
to version 18.3.14, 20.1.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.12.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in WebSQL
.
Remediation
Upgrade electron
to version 18.3.12, 19.0.16, 20.1.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.14.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Layout
.
Remediation
Upgrade electron
to version 19.1.0, 18.3.14 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.12.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Network Service
Remediation
Upgrade electron
to version 20.1.2, 19.1.0, 18.3.12 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.14.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Frames, via a crafted HTML page.
Remediation
Upgrade electron
to version 18.3.14, 19.1.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@19.1.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Layout.
Remediation
Upgrade electron
to version 19.1.5, 20.3.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@19.1.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in WebCodecs
, which allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 19.1.7, 20.3.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@19.1.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Web Workers, which allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 19.1.7, 20.3.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@20.3.9.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Mojo, via heap corruption.
Remediation
Upgrade electron
to version 20.3.9, 21.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@20.3.12.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in WebRTC, causing heap corruption.
Remediation
Upgrade electron
to version 20.3.12, 21.4.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. Multiple user after free vulnerabilities exists in the WebAudio component of chromium.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.2.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. It allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.2.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the audio component. It allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.2.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@7.2.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the audio component.
Remediation
Upgrade electron
to version 8.2.1, 7.2.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. It allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@8.3.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in WebRTC.
Remediation
Upgrade electron
to version 8.3.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@26.6.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the WebAudio
component. An attacker can potentially exploit heap corruption by convincing a user to visit a crafted HTML page.
Remediation
Upgrade electron
to version 26.6.5, 27.2.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@26.6.8.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Web Audio feature. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 26.6.8, 27.3.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.9.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free due to the improper handling of objects in memory in the Dawn
component. An attacker can potentially exploit heap corruption through a crafted HTML page.
Remediation
Upgrade electron
to version 27.3.9, 28.2.10, 29.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.9.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free due to improper handling in the WebCodecs
component. An attacker can achieve arbitrary read/write access by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 27.3.9, 28.2.10, 29.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free due to improper handling of objects in memory in the Dawn component. An attacker can cause heap corruption and potentially execute arbitrary code by convincing a user to visit a specially crafted HTML page.
Remediation
Upgrade electron
to version 27.3.11, 28.3.1, 29.3.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free through the Media Session
process. An attacker can execute arbitrary code inside a sandbox by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free through the Dawn
process. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free through the Dawn
component. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in the scheduling process. An attacker can execute arbitrary code inside a sandbox by using a crafted HTML page.
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free due to the improper handling of memory in the Dawn
process. An attacker can cause heap corruption by crafting a malicious HTML page.
Note: 126.0.6478.56 is the fixed version for Windows and Mac. Version 126.0.6478.54 fixes the vulnerability in Linux
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Dawn
process. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Note: 126.0.6478.56 is the fixed version for Windows and Mac. Version 126.0.6478.54 fixes the vulnerability in Linux
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
new
- Vulnerable module: cross-spawn
- Introduced through: cross-spawn@5.1.0, eslint@4.19.1 and others
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › cross-spawn@5.1.0Remediation: Upgrade to cross-spawn@6.0.6.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › eslint@4.19.1 › cross-spawn@5.1.0Remediation: Upgrade to eslint@5.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-eslint@4.0.2 › eslint@4.19.1 › cross-spawn@5.1.0Remediation: Upgrade to gulp-eslint@5.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › update-notifier@2.5.0 › boxen@1.3.0 › term-size@1.2.0 › execa@0.7.0 › cross-spawn@5.1.0Remediation: Upgrade to update-notifier@4.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › update-notifier@2.5.0 › boxen@1.3.0 › term-size@1.2.0 › execa@0.7.0 › cross-spawn@5.1.0Remediation: Upgrade to nodemon@2.0.3.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.
PoC
const { argument } = require('cross-spawn/lib/util/escape');
var str = "";
for (var i = 0; i < 1000000; i++) {
str += "\\";
}
str += "◎";
console.log("start")
argument(str)
console.log("end")
// run `npm install cross-spawn` and `node attack.js`
// then the program will stuck forever with high CPU usage
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade cross-spawn
to version 6.0.6, 7.0.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to External Control of Assumed-Immutable Web Parameter via a crafted HTML page. An attacker can perform an out of bounds memory write by sending a specially crafted HTML content.
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in Skia
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in Skia.
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in Skia.
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Read via a crafted HTML page. An attacker can potentially perform a sandbox escape by manipulating the memory outside its intended buffer limits.
Remediation
Upgrade electron
to version 29.4.6, 30.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in v8 engine.
Remediation
A fix was pushed into the master
branch but not yet published.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Dawn
component.
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free through the Swiftshader
process. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.4.5, 30.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free through the Dawn
process. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.4.5, 30.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free due to the improper handling of memory in the Dawn
component. An attacker can cause heap corruption and potentially execute arbitrary code by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.4.5, 30.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free through the Dawn
component. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.4.5, 30.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@30.4.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Dawn
component. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 30.4.0, 31.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@30.4.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Loader
component. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 30.4.0, 31.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Dawn
component. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the WebAudio
process. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
high severity
new
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Serial
process. An attacker can potentially exploit heap corruption.
Remediation
Upgrade electron
to version 31.7.5, 32.2.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@17.4.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in the WebRTC component.
Remediation
Upgrade electron
to version 17.4.11, 18.3.6 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow through the V8
engine. An attacker can corrupt memory and potentially execute arbitrary code by crafting a malicious HTML page.
Note: This is only exploitable if the user navigates to or is redirected to a malicious web page.
Remediation
Upgrade electron
to version 29.4.6, 30.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation. It allowed a remote attacker to leak cross-origin data via a crafted HTML page.
Remediation
Upgrade electron
to version 10.4.2, 11.4.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-Bounds. Out of bounds memory access in V8 in Google Chrome prior to 89.0.4389.72 allowed a remote attacker to potentially perform out of bounds memory access via a crafted HTML page. This vulnerability relates to an electron component.
Remediation
Upgrade electron
to version 10.4.2, 11.4.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@22.3.23.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-Bounds when the V8
engine processes a carefully crafted HTML page. An attacker can perform an out of bounds memory read, thereby potentially gaining unauthorized access to sensitive information.
Remediation
Upgrade electron
to version 22.3.23, 24.8.2, 25.8.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-Bounds memory access in V8
component. This vulnerability allowed a remote attacker to perform arbitrary read/write via a crafted HTML page.
Remediation
Upgrade electron
to version 27.3.10, 28.3.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Read through the V8 engine. An attacker can access memory locations outside of the intended bounds by crafting a malicious HTML page.
Note: This is only exploitable if the user navigates to or is redirected to a malicious web page.
Remediation
Upgrade electron
to version 29.4.6, 30.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@26.6.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Write allowing a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Note: The Stable channel has been updated to 120.0.6099.234 for Mac devices.
Remediation
Upgrade electron
to version 26.6.6, 27.2.3, 28.1.4 or higher.
References
high severity
new
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Write in Dawn.
Remediation
Upgrade electron
to version 31.7.4, 32.2.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in InferHasInPrototypeChain
of the V8
engine.
Remediation
Upgrade electron
to version 31.7.1, 32.2.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion via the V8 engine.
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Mojo
runtime libraries collection. This allows an attacker to exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 27.3.4, 28.2.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free through the Audio
process. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 29.4.6, 30.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Navigation
process. An attacker can exploit heap corruption by convincing a user to install a malicious extension.
Remediation
Upgrade electron
to version 29.4.6, 30.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via specific UI gestures in the Screen Capture
feature. An attacker can potentially exploit heap corruption by convincing a user to visit a crafted HTML page.
Remediation
Upgrade electron
to version 29.4.6, 30.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free through the Media Stream
process. An attacker can potentially exploit heap corruption by convincing a user to perform specific UI gestures on a crafted HTML page.
Remediation
Upgrade electron
to version 29.4.6, 30.4.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@23.2.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Access Control via nested unserializable return value when using contextIsolation
and contextBridge
are affected.
Exploiting this vulnerability allows code running in the main world context in the renderer to reach into the isolated Electron context and perform privileged actions.
Note
This issue is exploitable under either of two conditions:
If an API exposed to the main world via
contextBridge
can return an object or array that contains a JS object that cannot be serialized, such as a canvas rendering context. This would normally result in anError: object could not be cloned
exception being thrown.If an API exposed to the main world via
contextBridge
has a return value that throws a user-generated exception while being sent over the bridge, such as a dynamic getter property on an object that throws an error when being computed.
Workaround
The app-side workaround is to ensure that such a case, as mentioned in the workaround section, is not possible.
Ensure all values returned from a function exposed over the context bridge are supported and that any objects returned from functions do not have dynamic getters that can throw exceptions.
Auditing your exposed API is likely to be quite difficult, so we strongly recommend you update to a patched version of Electron.
Remediation
Upgrade electron
to version 23.2.3, 25.0.0-alpha.2 or higher.
References
high severity
- Vulnerable module: xmldom
- Introduced through: electron-packager@9.1.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › plist@2.1.0 › xmldom@0.1.31
Overview
xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.
Affected versions of this package are vulnerable to Prototype Pollution through the copy()
function in dom.js
. Exploiting this vulnerability is possible via the p
variable.
DISPUTED This vulnerability has been disputed by the maintainers of the package. Currently the only viable exploit that has been demonstrated is to pollute the target object (rather then the global object which is generally the case for Prototype Pollution vulnerabilities) and it is yet unclear if this limited attack vector exposes any vulnerability in the context of this package.
See the linked GitHub Issue for full details on the discussion around the legitimacy and potential revocation of this vulnerability.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
There is no fixed version for xmldom
.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@2.0.17.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Arbitrary Code Execution.
Opening a BrowserView
with sandbox: true
or nativeWindowOpen: true
and nodeIntegration: false
results in a webContents
where window.open()
can be called and the newly opened child will have nodeIntegration enabled.
Remediation
Upgrade electron
to version 2.0.17, 3.0.15, 3.1.3, 4.0.4, 5.0.0-beta.2 or higher.
If for some reason you are unable to upgrade your Electron version, you can mitigate this issue by disabling all child web contents: view.webContents.on('-add-new-contents', e => e.preventDefault());
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@22.3.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Read in GPU Video in Google Chrome prior to 111.0.5563.110 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 22.3.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@7.2.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Site Isolation Bypass. parent_execution_origin_
is provided from parent's RenderFrameHostImpl::last_committed_origin_
that is set during navigation commit. Worker creation IPC from the renderer to browser could race with navigation commit, and could see the wrong last committed origin.
Remediation
Upgrade electron
to version 7.2.2, 8.2.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. Since JavaScript may detach the underlying buffers, they need to be checked to ensure they're still valid before using them for decoding.
Remediation
Upgrade electron
to version 10.2.0, 9.4.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. An AudioContext
is considered to have activity if it's not closed. Previously, suspended contexts were considered has having no activity, but that's not quite true since the context can be resumed at any time after. This would allow contexts to be collected prematurely even though the context was resumed. This causes the audio thread to access objects that are possibly deleted.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.0.0-beta.6 or higher.
References
high severity
- Vulnerable module: ajv
- Introduced through: eslint@4.19.1 and gulp-eslint@4.0.2
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › eslint@4.19.1 › ajv@5.5.2Remediation: Upgrade to eslint@5.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › eslint@4.19.1 › table@4.0.2 › ajv@5.5.2Remediation: Upgrade to eslint@5.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-eslint@4.0.2 › eslint@4.19.1 › ajv@5.5.2Remediation: Upgrade to gulp-eslint@5.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-eslint@4.0.2 › eslint@4.19.1 › table@4.0.2 › ajv@5.5.2Remediation: Upgrade to gulp-eslint@5.0.0.
Overview
ajv is an Another JSON Schema Validator
Affected versions of this package are vulnerable to Prototype Pollution. A carefully crafted JSON schema could be provided that allows execution of other code by prototype pollution. (While untrusted schemas are recommended against, the worst case of an untrusted schema should be a denial of service, not execution of code.)
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade ajv
to version 6.12.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Insecure Defaults. Insufficient policy enforcement in the File System API of chromium allows a remote attacker to bypass filesystem restrictions via a crafted HTML page.
Remediation
Upgrade electron
to version 10.4.1, 11.4.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Write in the Compositing
process. An attacker can potentially perform a sandbox escape by exploiting specific UI gestures. This is only exploitable if the attacker has already compromised the GPU process.
Remediation
Upgrade electron
to version 27.3.11, 28.3.1, 29.3.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@26.6.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the WebGPU
process. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 26.6.5, 27.2.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@26.6.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the ANGLE component. An attacker can potentially exploit heap corruption by convincing a user to visit a crafted HTML page.
Remediation
Upgrade electron
to version 26.6.5, 27.2.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@7.2.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Privilege Escalation. This is a context isolation bypass, meaning that code running in the main world context in the renderer can reach into the isolated Electron context and perform privileged actions.
##Note:
Only apps using contextIsolation
are affected.
Remediation
Upgrade electron
to version 7.2.4, 8.2.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@7.2.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Privilege Escalation. This is a context isolation bypass, meaning that code running in the main world context in the renderer can reach into the isolated Electron context and perform privileged actions.
##Note:
Only apps using both contextIsolation
and contextBridge
are affected.
Remediation
Upgrade electron
to version 7.2.4, 8.2.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Privilege Escalation. This is a context isolation bypass, meaning that code running in the main world context in the renderer can reach into the isolated Electron context and perform privileged actions.
##Note:
Only apps using contextIsolation
are affected.
Remediation
Upgrade electron
to version 6.1.11, 7.2.4, 8.2.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@25.9.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation in the USB component.
Remediation
Upgrade electron
to version 25.9.4, 26.5.0, 27.0.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@25.9.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Integer Overflow or Wraparound in the USB component.
Remediation
Upgrade electron
to version 25.9.4, 26.5.0, 27.0.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.8.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to NULL Pointer Dereference in V8, due to an object lifecycle issue involving scope inheritance.
Remediation
Upgrade electron
to version 27.3.8, 28.2.9, 29.1.6 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@16.0.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Animation component in Chromium.
Remediation
Upgrade electron
to version 16.0.10, 17.1.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@19.1.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in V8
, which allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 19.1.7, 20.3.7 or higher.
References
high severity
- Vulnerable module: ansi-regex
- Introduced through: gulp-util@3.0.8, gulp@3.9.1 and others
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-util@3.0.8 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1Remediation: Upgrade to gulp@4.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-util@3.0.8 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to gulp@4.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › eslint@4.19.1 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › gulp-util@3.0.8 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › eslint@4.19.1 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › gulp-util@3.0.8 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-eslint@4.0.2 › eslint@4.19.1 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-eslint@4.0.2 › eslint@4.19.1 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-plugin-istanbul@4.1.6 › istanbul-lib-instrument@1.10.2 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-plugin-istanbul@4.1.6 › istanbul-lib-instrument@1.10.2 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8 › electron-download@3.3.0 › nugget@2.2.0 › single-line-log@1.1.2 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › electron-download@4.1.1 › nugget@2.2.0 › single-line-log@1.1.2 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-plugin-istanbul@4.1.6 › istanbul-lib-instrument@1.10.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-plugin-istanbul@4.1.6 › istanbul-lib-instrument@1.10.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-block-scoping@6.26.0 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-computed-properties@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-systemjs@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-parameters@6.24.1 › babel-helper-call-delegate@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-exponentiation-operator@6.24.1 › babel-helper-builder-binary-assignment-operator-visitor@6.24.1 › babel-helper-explode-assignable-expression@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-function-name@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-object-super@6.24.1 › babel-helper-replace-supers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-exponentiation-operator@6.24.1 › babel-helper-builder-binary-assignment-operator-visitor@6.24.1 › babel-helper-explode-assignable-expression@6.24.1 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-async-to-generator@6.24.1 › babel-helper-remap-async-to-generator@6.24.1 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-classes@6.24.1 › babel-helper-define-map@6.26.0 › babel-helper-function-name@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-es2015@6.24.1 › babel-plugin-transform-es2015-modules-umd@6.24.1 › babel-plugin-transform-es2015-modules-amd@6.24.1 › babel-plugin-transform-es2015-modules-commonjs@6.26.2 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the sub-patterns [[\\]()#;?]*
and (?:;[-a-zA-Z\\d\\/#&.:=?%@~_]*)*
.
PoC
import ansiRegex from 'ansi-regex';
for(var i = 1; i <= 50000; i++) {
var time = Date.now();
var attack_str = "\u001B["+";".repeat(i*10000);
ansiRegex().test(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ansi-regex
to version 3.0.1, 4.1.1, 5.0.1, 6.0.1 or higher.
References
high severity
- Vulnerable module: braces
- Introduced through: babel-plugin-istanbul@4.1.6, babel-cli@6.26.0 and others
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-plugin-istanbul@4.1.6 › test-exclude@4.2.3 › micromatch@2.3.11 › braces@1.8.5Remediation: Upgrade to babel-plugin-istanbul@5.0.1.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › chokidar@1.7.0 › anymatch@1.3.2 › micromatch@2.3.11 › braces@1.8.5
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › micromatch@3.1.10 › braces@2.3.2Remediation: Upgrade to gulp-load-plugins@2.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › braces@2.3.2Remediation: Upgrade to nodemon@2.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › findup-sync@3.0.0 › micromatch@3.1.10 › braces@2.3.2Remediation: Upgrade to gulp-load-plugins@2.0.1.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › chokidar@1.7.0 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › braces@2.3.2Remediation: Upgrade to gulp@4.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2
Overview
braces is a Bash-like brace expansion, implemented in JavaScript.
Affected versions of this package are vulnerable to Uncontrolled resource consumption due improper limitation of the number of characters it can handle, through the parse
function. An attacker can cause the application to allocate excessive memory and potentially crash by sending imbalanced braces as input.
PoC
const { braces } = require('micromatch');
console.log("Executing payloads...");
const maxRepeats = 10;
for (let repeats = 1; repeats <= maxRepeats; repeats += 1) {
const payload = '{'.repeat(repeats*90000);
console.log(`Testing with ${repeats} repeats...`);
const startTime = Date.now();
braces(payload);
const endTime = Date.now();
const executionTime = endTime - startTime;
console.log(`Regex executed in ${executionTime / 1000}s.\n`);
}
Remediation
Upgrade braces
to version 3.0.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@17.4.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Denial of Service (DoS) in PDF in Google Chrome, a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade electron
to version 17.4.11, 18.3.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.14.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Denial of Service (DoS) due to insufficient validation of untrusted input in V8.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade electron
to version 18.3.14 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@19.1.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Denial of Service (DoS) due to type confusion in V8, which allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 19.1.7, 20.3.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Denial of Service (DoS) via an Out of bounds memory access in V8.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade electron
to version 27.3.6, 28.2.7, 29.1.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@8.5.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in Freetype.
Remediation
Upgrade electron
to version 8.5.3, 9.3.3, 10.1.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow via V8
.
Remediation
Upgrade electron
to version 10.4.4, 11.4.4, 12.0.6 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Read. An unknown vunerability exists in Chrome which affects electron
.
Remediation
Upgrade electron
to version 9.4.1, 10.3.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. FileChooserImpl
can outlive ListenerProxy
leading to a crash.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. Initialize()
could potentially run twice in MojoVideoEncodeAcceleratorService
.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.2.1 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: gulp@3.9.1
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › lodash@1.0.2
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution through the zipObjectDeep
function due to improper user input sanitization in the baseZipObject
function.
PoC
lodash.zipobjectdeep:
const zipObjectDeep = require("lodash.zipobjectdeep");
let emptyObject = {};
console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined
zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function
console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true
lodash:
const test = require("lodash");
let emptyObject = {};
console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined
test.zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function
console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash
to version 4.17.17 or higher.
References
high severity
- Vulnerable module: micromatch
- Introduced through: babel-plugin-istanbul@4.1.6, babel-cli@6.26.0 and others
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-plugin-istanbul@4.1.6 › test-exclude@4.2.3 › micromatch@2.3.11Remediation: Upgrade to babel-plugin-istanbul@5.0.1.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › chokidar@1.7.0 › anymatch@1.3.2 › micromatch@2.3.11
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › micromatch@3.1.10Remediation: Upgrade to gulp-load-plugins@2.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › findup-sync@3.0.0 › micromatch@3.1.10Remediation: Upgrade to gulp-load-plugins@2.0.1.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › chokidar@1.7.0 › readdirp@2.2.1 › micromatch@3.1.10
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10Remediation: Upgrade to gulp@4.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10
Overview
Affected versions of this package are vulnerable to Inefficient Regular Expression Complexity due to the use of unsafe pattern configurations that allow greedy matching through the micromatch.braces()
function. An attacker can cause the application to hang or slow down by passing a malicious payload that triggers extensive backtracking in regular expression processing.
Remediation
Upgrade micromatch
to version 4.0.8 or higher.
References
high severity
- Vulnerable module: minimatch
- Introduced through: gulp@3.9.1
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-stream@3.1.18 › minimatch@2.0.10
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-stream@3.1.18 › glob@4.5.3 › minimatch@2.0.10Remediation: Upgrade to gulp@4.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › minimatch@0.2.14
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › glob@3.1.21 › minimatch@0.2.14
Overview
minimatch is a minimal matching utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via complicated and illegal regexes.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade minimatch
to version 3.0.2 or higher.
References
high severity
patched
- Vulnerable module: minimatch
- Introduced through: gulp@3.9.1
Vulnerability patched for: gulp vinyl-fs glob-stream minimatch
Vulnerability patched for: gulp vinyl-fs glob-stream glob minimatch
Vulnerability patched for: gulp vinyl-fs glob-watcher gaze globule minimatch
Vulnerability patched for: gulp vinyl-fs glob-watcher gaze globule glob minimatch
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-stream@3.1.18 › minimatch@2.0.10Remediation: Open PR to patch minimatch@2.0.10.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-stream@3.1.18 › glob@4.5.3 › minimatch@2.0.10Remediation: Upgrade to gulp@4.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › minimatch@0.2.14Remediation: Open PR to patch minimatch@0.2.14.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › glob@3.1.21 › minimatch@0.2.14Remediation: Open PR to patch minimatch@0.2.14.
Overview
minimatch is a minimal matching utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS).
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade minimatch
to version 3.0.2 or higher.
References
high severity
- Vulnerable module: mocha
- Introduced through: mocha@5.2.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › mocha@5.2.0Remediation: Upgrade to mocha@10.1.0.
Overview
mocha is a javascript test framework for node.js & the browser.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the clean
function in utils.js
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mocha
to version 10.1.0 or higher.
References
high severity
- Vulnerable module: mocha
- Introduced through: mocha@5.2.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › mocha@5.2.0Remediation: Upgrade to mocha@6.0.0.
Overview
mocha is a javascript test framework for node.js & the browser.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). If the stack trace in utils.js
begins with a large error message (>= 20k characters), and full-trace
is not undisabled, utils.stackTraceFilter()
will take exponential time to run.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mocha
to version 6.0.0 or higher.
References
high severity
- Vulnerable module: semver
- Introduced through: gulp@3.9.1
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › semver@4.3.6Remediation: Upgrade to gulp@4.0.0.
Overview
semver is a semantic version parser used by npm.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range
, when untrusted user data is provided as a range.
PoC
const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]
console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})
const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade semver
to version 5.7.2, 6.3.1, 7.5.2 or higher.
References
high severity
- Vulnerable module: unset-value
- Introduced through: gulp-load-plugins@1.6.0, nodemon@1.19.4 and others
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › findup-sync@3.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › findup-sync@3.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › findup-sync@3.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › findup-sync@3.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › chokidar@1.7.0 › readdirp@2.2.1 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › chokidar@1.7.0 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-load-plugins@1.6.0 › findup-sync@3.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › chokidar@1.7.0 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › chokidar@1.7.0 › readdirp@2.2.1 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › chokidar@1.7.0 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
Overview
Affected versions of this package are vulnerable to Prototype Pollution via the unset
function in index.js
, because it allows access to object prototype properties.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade unset-value
to version 2.0.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Read via the IPC
in chromium.
Remediation
Upgrade electron
to version 11.4.4, 10.4.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@5.0.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Arbitrary Code Execution due to Node being enabled in a webview because the default values of nodeIntegration
and webviewTag
were set to true
when they where undefined by a user. The fix allows users to prevent Node and webview being enabled, when undefined, by setting the default values of nodeIntegration
and webviewTag
to false
.
Remediation
Upgrade electron
to version 5.0.0-beta.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Buffer Overflow in ANGLE.
Remediation
Upgrade electron
to version 13.5.0, 12.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in Reader Mode.
Remediation
Upgrade electron
to version 12.0.10, 11.4.8, 10.4.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in History.
Remediation
Upgrade electron
to version 12.0.10, 11.4.8, 10.4.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in Media Feeds.
Remediation
Upgrade electron
to version 12.0.10, 11.4.8, 10.4.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.5.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow via the Blink module in Chromium.
Remediation
Upgrade electron
to version 14.2.0, 13.5.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@16.2.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in WebGPU.
Remediation
Upgrade electron
to version 16.2.5, 17.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in V8 Internationalization.
Remediation
Upgrade electron
to version 15.5.6, 16.2.7, 17.4.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@19.1.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in Crashpad in Google Chrome on Android, which allows a remote attacker who had compromised the renderer process to potentially perform a sandbox escape via a crafted HTML page.
Remediation
Upgrade electron
to version 19.1.7, 20.3.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@20.3.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in Network Service via a crafted HTML page and specific interactions.
Remediation
Upgrade electron
to version 20.3.10, 21.3.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@21.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in Metrics by allowing a remote attacker who had compromised the renderer process to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 21.4.4, 22.3.5 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@22.3.25.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in vp8
encoding in libvpx
.
Remediation
Upgrade electron
to version 22.3.25, 24.8.5, 25.8.4, 26.2.4, 27.0.0-beta.8 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@26.6.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in the WebRTC framework, used to provide Real-Time Communications (RTC) capabilities via JavaScript APIs.
Remediation
Upgrade electron
to version 26.6.3, 27.2.0, 28.1.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in the ANGLE
process. An attacker can perform an out of bounds memory read via a crafted HTML page.
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in the Dawn
process. An attacker can perform an out of bounds memory write by exploiting a crafted HTML page.
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@14.2.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Check or Handling of Exceptional Conditions which returns an invalid handle after ReportBadMessage
Remediation
Upgrade electron
to version 14.2.7, 15.4.0, 16.0.10 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation in Blink Editing.
Remediation
Upgrade electron
to version 15.5.4, 16.2.6, 17.4.3, 18.2.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Validation. The value of a node was accessed without prior HasValue
check. With WebAssembly this node is not guaranteed to be a value.
Remediation
Upgrade electron
to version 10.1.6, 9.4.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Inappropriate implementation in Input.
Remediation
Upgrade electron
to version 15.5.5, 16.2.6, 17.4.4, 18.2.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Insufficient Validation in V8.
Remediation
Upgrade electron
to version 9.4.0, 10.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Insufficient Validation via an unknown issue in chromium
.
Remediation
Upgrade electron
to version 9.4.2, 10.3.1, 11.2.2 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-Bounds in ANGLE.
Remediation
Upgrade electron
to version 13.5.0, 12.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Read. The input to sctp_load_addresses_from_init
is verified by calling sctp_arethere_unrecognized_parameters
, however there is a difference in how these functions handle parameter bounds. The function sctp_arethere_unrecognized_parameters
does not process a parameter that is partially outside of the limit of the chunk, meanwhile, sctp_load_addresses_from_init
will continue processing until a parameter that is entirely outside of the chunk occurs.
This means that the last parameter of a chunk is not always verified, which can lead to parameters with very short plen
values being processed by sctp_load_addresses_from_init
. This can lead to out-of-bounds reads whenever the plen
is subtracted from the header len
.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Race Condition in Aura.
Remediation
Upgrade electron
to version 12.0.10, 11.4.8, 10.4.7 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion due to mishandling of interceptors which can lead to out-of-bounds memory access.
Remediation
Upgrade electron
to version 15.5.0, 16.2.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in V8.
Remediation
Upgrade electron
to version 15.5.3, 16.2.3, 17.4.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@26.6.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion due to a type confusion in V8. A remote attacker could exploit heap corruption via a crafted HTML page.
Note: The Stable channel has been updated to 120.0.6099.234 for Mac devices.
Remediation
Upgrade electron
to version 26.6.6, 27.2.3, 28.1.4 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.6.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in V8.
Remediation
Upgrade electron
to version 13.6.6, 14.2.4 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: gulp@3.9.1
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › lodash@1.0.2
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The function defaultsDeep
could be tricked into adding or modifying properties of Object.prototype
using a constructor
payload.
PoC by Snyk
const mergeFn = require('lodash').defaultsDeep;
const payload = '{"constructor": {"prototype": {"a0": true}}}'
function check() {
mergeFn({}, JSON.parse(payload));
if (({})[`a0`] === true) {
console.log(`Vulnerable to Prototype Pollution via ${payload}`);
}
}
check();
For more information, check out our blog post
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash
to version 4.17.12 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: gulp@3.9.1
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › lodash@1.0.2
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution via the set
and setwith
functions due to improper user input sanitization.
PoC
lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash
to version 4.17.17 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: gulp@3.9.1
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › lodash@1.0.2
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The functions merge
, mergeWith
, and defaultsDeep
could be tricked into adding or modifying properties of Object.prototype
. This is due to an incomplete fix to CVE-2018-3721
.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash
to version 4.17.11 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: gulp@3.9.1
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › lodash@1.0.2
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Code Injection via template
.
PoC
var _ = require('lodash');
_.template('', { variable: '){console.log(process.env)}; with(obj' })()
Remediation
Upgrade lodash
to version 4.17.21 or higher.
References
high severity
- Vulnerable module: lodash.template
- Introduced through: gulp-util@3.0.8 and gulp@3.9.1
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-util@3.0.8 › lodash.template@3.6.2
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › gulp-util@3.0.8 › lodash.template@3.6.2
Overview
lodash.template is a The Lodash method _.template exported as a Node.js module.
Affected versions of this package are vulnerable to Code Injection via template
.
PoC
var _ = require('lodash');
_.template('', { variable: '){console.log(process.env)}; with(obj' })()
Remediation
There is no fixed version for lodash.template
.
References
high severity
- Vulnerable module: axios
- Introduced through: browser-sync@2.29.3
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › browser-sync@2.29.3 › localtunnel@2.0.2 › axios@0.21.4
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Cross-site Request Forgery (CSRF) due to inserting the X-XSRF-TOKEN
header using the secret XSRF-TOKEN
cookie value in all requests to any server when the XSRF-TOKEN
0 cookie is available, and the withCredentials
setting is turned on. If a malicious user manages to obtain this value, it can potentially lead to the XSRF defence mechanism bypass.
Workaround
Users should change the default XSRF-TOKEN
cookie name in the Axios configuration and manually include the corresponding header only in the specific places where it's necessary.
Remediation
Upgrade axios
to version 0.28.0, 1.6.0 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@22.3.16.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Read in WebRTC, exploitable via a crafted HTML page.
Remediation
Upgrade electron
to version 22.3.16 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@26.6.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Media Stream process. An attacker can potentially exploit heap corruption by crafting a malicious HTML page.
Remediation
Upgrade electron
to version 26.6.3, 27.2.0 or higher.
References
high severity
- Vulnerable module: plist
- Introduced through: electron-packager@9.1.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › plist@2.1.0Remediation: Upgrade to electron-packager@13.0.0.
Overview
plist
is a Mac OS X Plist parser/builder for Node.js and browsers
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks due to bundling a vulnerable version of the XMLBuilder package. This can cause an impact of about 10 seconds matching time for data 60 characters long.
Disclosure Timeline
- Feb 5th, 2018 - Initial Disclosure to package owner
- Feb 6th, 2018 - Initial Response from package owner
- Mar 18th, 2018 - Fix issued
- Apr 15th, 2018 - Vulnerability published
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade plist
to version 3.0.1 or higher.
References
high severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-bounds Read in Skia.
Remediation
Upgrade electron
to version 31.7.2, 32.2.2 or higher.
References
high severity
- Vulnerable module: plist
- Introduced through: electron-packager@9.1.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › plist@2.1.0Remediation: Upgrade to electron-packager@13.0.0.
Overview
plist is a Mac OS X Plist parser/builder for Node.js and browsers.
Affected versions of this package are vulnerable to Prototype Pollution via the .parse()
, exploiting this vulnerability may lead to Denial of Service (DoS) and Remote Code Execution.
PoC:
var plist = require('plist');
var xmlPollution = `
<plist version="1.0">
<dict>
<key>__proto__</key>
<dict>
<key>length</key>
<string>polluted</string>
</dict>
</dict>
</plist>`;
console.log(plist.parse(xmlPollution).length); // polluted
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade plist
to version 3.0.4 or higher.
References
medium severity
new
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Access of Resource Using Incompatible Type ('Type Confusion') via a crafted HTML page. An attacker can potentially exploit heap corruption.
Remediation
Upgrade electron
to version 31.7.4, 32.2.3 or higher.
References
medium severity
new
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@32.2.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Access of Resource Using Incompatible Type ('Type Confusion') via a crafted HTML page. An attacker can potentially exploit heap corruption.
Remediation
Upgrade electron
to version 32.2.3 or higher.
References
medium severity
new
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Access Restriction Bypass due to an inappropriate implementation in the Extensions
feature. An attacker can bypass site isolation.
Remediation
Upgrade electron
to version 31.7.5, 32.2.5 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in Fonts.
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow through the V8
engine.
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@31.7.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion. An attacker can access memory locations outside of the intended bounds by crafting a malicious HTML page that triggers type confusion in the V8 engine.
Remediation
Upgrade electron
to version 31.7.2 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@7.2.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Arbitrary File Read. It allows arbitrary local file read by defining unsafe window options on a child window opened via window.open
.
Remediation
Upgrade electron
to version 7.2.4, 8.2.4 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Integer Overflow or Wraparound when decoding videos with a large frame size. An attacker can cause memory corruption within the AV1 decoder by providing a specially crafted video file.
Remediation
Upgrade electron
to version 27.3.11, 28.3.1 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@16.2.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via Angle, where base level changes may not update FBO completeness check.
Remediation
Upgrade electron
to version 16.2.0 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free. The rendering_orphan_handlers_
and deletable_orphan_handlers_
handlers can hold references to the context after BaseAudioContext
is destroyed.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.2.1 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation which allows attackers who have control over a given app's update server or update storage to serve maliciously crafted update packages that pass the code signing validation check but contain malicious code in some components.
Remediation
Upgrade electron
to version 15.5.0, 16.2.0, 17.2.0, 18.0.0 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Access Restriction Bypass. Inappropriate implementation in Referrer in Google Chrome prior to 89.0.4389.72 allowed a remote attacker to bypass navigation restrictions via a crafted HTML page. This vulnerability relates to an electron component.
Remediation
Upgrade electron
to version 10.4.3, 11.4.1 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@16.0.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Domain Spoofing via a crafted HTML page as a result of inappropriate implementation in navigation in Google Chrome.
Remediation
Upgrade electron
to version 16.0.0 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Heap-based Buffer Overflow in WebGL via Chrome. This allows a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 13.1.8, 12.0.16, 11.4.11 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation via the File System API.
Remediation
Upgrade electron
to version 11.2.1, 9.4.4 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@17.4.8.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation in Data Transfer, because the sanitization code only does one round of parsing and serializing.
Remediation
Upgrade electron
to version 17.4.8, 18.3.5 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.6.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Inappropriate Implementation via cache in Google Chrome. This allows a remote attacker to leak cross-origin data via a crafted HTML page.
Remediation
Upgrade electron
to version 13.6.6, 14.2.2, 15.3.3 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Information Exposure. When a BigInt
is right-shifted the backing store is not properly cleared, allowing uninitialized memory to be read.
Remediation
Upgrade electron
to version 9.4.1, 10.3.2 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Information Exposure via the core module in Chromium.
Remediation
Upgrade electron
to version 14.2.0, 13.5.2, 12.2.2 or higher.
References
medium severity
- Vulnerable module: ip
- Introduced through: ip@1.1.9
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › ip@1.1.9
Overview
ip is a Node library.
Affected versions of this package are vulnerable to Server-Side Request Forgery (SSRF) via the isPublic
function, which identifies some private IP addresses as public addresses due to improper parsing of the input.
An attacker can manipulate a system that uses isLoopback()
, isPrivate()
and isPublic
functions to guard outgoing network requests to treat certain IP addresses as globally routable by supplying specially crafted IP addresses.
Note
This vulnerability derived from an incomplete fix for CVE-2023-42282
Remediation
There is no fixed version for ip
.
References
medium severity
- Vulnerable module: request
- Introduced through: electron@1.8.8 and electron-packager@9.1.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8 › electron-download@3.3.0 › nugget@2.2.0 › request@2.88.2
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › electron-download@4.1.1 › nugget@2.2.0 › request@2.88.2
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › asar@0.13.1 › mksnapshot@0.3.5 › request@2.88.2
Overview
request is a simplified http request client.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js
file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: request
package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.
Remediation
A fix was pushed into the master
branch but not yet published.
References
medium severity
- Vulnerable module: tough-cookie
- Introduced through: electron@1.8.8 and electron-packager@9.1.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8 › electron-download@3.3.0 › nugget@2.2.0 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › electron-download@4.1.1 › nugget@2.2.0 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › asar@0.13.1 › mksnapshot@0.3.5 › request@2.88.2 › tough-cookie@2.5.0
Overview
tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.
Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.
PoC
// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
"Slonser=polluted; Domain=__proto__; Path=/notauth",
"https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
"Auth=Lol; Domain=google.com; Path=/notauth",
"https://google.com/"
);
//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade tough-cookie
to version 4.1.3 or higher.
References
medium severity
- Vulnerable module: xmldom
- Introduced through: electron-packager@9.1.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › plist@2.1.0 › xmldom@0.1.31
Overview
xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.
Affected versions of this package are vulnerable to Improper Input Validation. It does not correctly escape special characters when serializing elements are removed from their ancestor. This may lead to unexpected syntactic changes during XML processing in some downstream applications.
Note: Customers who use "xmldom" package, should use "@xmldom/xmldom" instead, as "xmldom" is no longer maintained.
Remediation
There is no fixed version for xmldom
.
References
medium severity
- Vulnerable module: json5
- Introduced through: babel-core@6.26.3, babel-cli@6.26.0 and others
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-core@6.26.3 › json5@0.5.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-core@6.26.3 › json5@0.5.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-register@6.26.0 › babel-core@6.26.3 › json5@0.5.1
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › babel-register@6.26.0 › babel-core@6.26.3 › json5@0.5.1
Overview
Affected versions of this package are vulnerable to Prototype Pollution via the parse
method , which does not restrict parsing of keys named __proto__
, allowing specially crafted strings to pollute the prototype of the resulting object. This pollutes the prototype of the object returned by JSON5.parse
and not the global Object prototype (which is the commonly understood definition of Prototype Pollution). Therefore, the actual impact will depend on how applications utilize the returned object and how they filter unwanted keys.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade json5
to version 1.0.2, 2.2.2 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@19.1.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation in file system.
Remediation
Upgrade electron
to version 19.1.5, 21.2.2 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion in V8.
Remediation
Upgrade electron
to version 15.5.3, 16.2.4, 17.4.2 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free in Network service.
Remediation
Upgrade electron
to version 12.0.13, 11.4.10 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@11.4.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via sqlite. This can allow a remote attacker to potentially exploit heap corruption via a crafted HTML page.
Remediation
Upgrade electron
to version 13.1.8, 12.0.16, 11.4.11 or higher.
References
medium severity
- Vulnerable module: lodash
- Introduced through: gulp@3.9.1
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › lodash@1.0.2
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object
prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.
PoC by Olivier Arteau (HoLyVieR)
var _= require('lodash');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';
var a = {};
console.log("Before : " + a.oops);
_.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash
to version 4.17.5 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Race Condition via a crafted Chrome Extension. An attacker who convinced a user to install a malicious extension can inject scripts or HTML into a privileged page.
Remediation
Upgrade electron
to version 29.4.6, 30.4.0 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@27.3.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the xmlTextReader
module. An attacker can cause denial of service by processing crafted XML documents with DTD validation and XInclude expansion enabled.
Remediation
Upgrade electron
to version 27.3.5, 28.2.6 or higher.
References
medium severity
- Vulnerable module: inflight
- Introduced through: babel-cli@6.26.0, eslint@4.19.1 and others
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › eslint@4.19.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › mocha@5.2.0 › glob@7.1.2 › inflight@1.0.6
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-eslint@4.0.2 › eslint@4.19.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › asar@0.13.1 › glob@6.0.4 › inflight@1.0.6
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-stream@3.1.18 › glob@4.5.3 › inflight@1.0.6
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8 › electron-download@3.3.0 › fs-extra@0.30.0 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › eslint@4.19.1 › file-entry-cache@2.0.0 › flat-cache@1.3.4 › rimraf@2.6.3 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › asar@0.13.1 › mksnapshot@0.3.5 › fs-extra@0.26.7 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp-eslint@4.0.2 › eslint@4.19.1 › file-entry-cache@2.0.0 › flat-cache@1.3.4 › rimraf@2.6.3 › glob@7.2.3 › inflight@1.0.6
Overview
Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres
function due to improperly deleting keys from the reqs
object after execution of callbacks. This behavior causes the keys to remain in the reqs
object, which leads to resource exhaustion.
Exploiting this vulnerability results in crashing the node
process or in the application crash.
Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.
To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.
PoC
const inflight = require('inflight');
function testInflight() {
let i = 0;
function scheduleNext() {
let key = `key-${i++}`;
const callback = () => {
};
for (let j = 0; j < 1000000; j++) {
inflight(key, callback);
}
setImmediate(scheduleNext);
}
if (i % 100 === 0) {
console.log(process.memoryUsage());
}
scheduleNext();
}
testInflight();
Remediation
There is no fixed version for inflight
.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@22.3.24.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Insufficient Verification of Data Authenticity when the embeddedAsarIntegrityValidation
and onlyLoadAppFromAsar
fuses are enabled.
An attacker can edit files inside the .app
bundle on macOS, which these fuses are supposed to protect against, by gaining write access to the filesystem from which the app is launched.
Note
This is only exploitable if your app is launched from a filesystem the attacker has write access to and is specific to macOS, as these fuses are only supported on macOS.
Remediation
Upgrade electron
to version 22.3.24, 24.8.3, 25.8.1, 26.2.1 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.9.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Access Control Bypass due to insufficient policy enforcement in Cookies
.
Remediation
Upgrade electron
to version 18.3.9, 19.0.12 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@17.4.9.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Protection Mechanism Failure in File System API.
Remediation
Upgrade electron
to version 17.4.9, 18.3.6, 19.0.7 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.7.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Information Exposure in that it reveals hashed credentials when the target of a redirect is an SMB URL, such as one using the file://
scheme.
NOTE: This vulnerability is only exploitable on Windows.
Workaround
This vulnerability can be worked around by preventing redirects to file://
URLs in the WebContents.on('will-redirect')
event.
Remediation
Upgrade electron
to version 18.3.7, 19.0.11, 20.0.1 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@6.1.10.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Buffer Underflow. Since there may be multiple instance of DWriteFontProxyImpl
instantiated for multiple RenderProcessHosts
, and DWriteFontProxyImpl::GetUniqueNameLookupTable
may access DWriteFontLookupTableBuilder::QueueShareMemoryRegionWhenReady
from separate threads, there may be race conditions around the pending_callbacks_
member of DWriteFontLookupTableBuilder
.
Remediation
Upgrade electron
to version 6.1.10, 7.2.2, 8.2.0 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.8.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Buffer Overflow when changing the PDF layout confuses AddFindResult()
and causes it to fail a DCHECK()
Remediation
Upgrade electron
to version 18.3.8, 19.0.13 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.6.8.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Control of a Resource Through its Lifetime in the FramebufferAttachment::mRenderToTextureSamples
method in Angle. It was never updated if the renderbuffer
storage was changed after attaching to framebuffer
.
Remediation
Upgrade electron
to version 13.6.8, 14.2.4, 15.3.6 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@16.2.5.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Inappropriate implementation in WebGL.
Remediation
Upgrade electron
to version 16.2.5, 17.4.3 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Inappropriate implementation in Web Cursor.
Remediation
Upgrade electron
to version 15.5.4, 16.2.3, 17.4.1 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@14.2.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Inappropriate Implementation via service workers in Google Chrome. This allows a remote attacker who had compromised the renderer process to bypass site isolation via a crafted HTML page.
Remediation
Upgrade electron
to version 14.2.2, 15.3.3 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Sandbox Bypass via chromium, due to a child process's delayed integrity level not being set correctly.
Remediation
Upgrade electron
to version 12.2.2, 13.5.2, 14.2.0 or higher.
References
medium severity
- Vulnerable module: minimist
- Introduced through: mocha@5.2.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › mocha@5.2.0 › mkdirp@0.5.1 › minimist@0.0.8Remediation: Upgrade to mocha@6.2.3.
Overview
minimist is a parse argument options module.
Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype
using a constructor
or __proto__
payload.
PoC by Snyk
require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true
require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade minimist
to version 0.2.1, 1.2.3 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Exposure of Resource to Wrong Sphere which allows a renderer with JS
execution to obtain access to a new renderer process even without nodeIntegrationInSubFrames
being enabled, that allows effective access to ipcRenderer
.
Remediation
Upgrade electron
to version 15.5.6, 16.2.6, 17.2.0, 18.0.0 or higher.
References
medium severity
- Vulnerable module: got
- Introduced through: update-notifier@2.5.0 and nodemon@1.19.4
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › update-notifier@2.5.0 › latest-version@3.1.0 › package-json@4.0.1 › got@6.7.1Remediation: Upgrade to update-notifier@6.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › update-notifier@2.5.0 › latest-version@3.1.0 › package-json@4.0.1 › got@6.7.1Remediation: Upgrade to nodemon@2.0.17.
Overview
Affected versions of this package are vulnerable to Open Redirect due to missing verification of requested URLs. It allowed a victim to be redirected to a UNIX socket.
Remediation
Upgrade got
to version 11.8.5, 12.1.0 or higher.
References
medium severity
- Vulnerable module: xmldom
- Introduced through: electron-packager@9.1.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron-packager@9.1.0 › plist@2.1.0 › xmldom@0.1.31Remediation: Upgrade to electron-packager@13.0.0.
Overview
xmldom is an A pure JavaScript W3C standard-based (XML DOM Level 2 Core) DOMParser and XMLSerializer module.
Affected versions of this package are vulnerable to XML External Entity (XXE) Injection. Does not correctly preserve system identifiers, FPIs or namespaces when repeatedly parsing and serializing maliciously crafted documents.
Details
XXE Injection is a type of attack against an application that parses XML input. XML is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. By default, many XML processors allow specification of an external entity, a URI that is dereferenced and evaluated during XML processing. When an XML document is being parsed, the parser can make a request and include the content at the specified URI inside of the XML document.
Attacks can include disclosing local files, which may contain sensitive data such as passwords or private user data, using file: schemes or relative paths in the system identifier.
For example, below is a sample XML document, containing an XML element- username.
<xml>
<?xml version="1.0" encoding="ISO-8859-1"?>
<username>John</username>
</xml>
An external XML entity - xxe
, is defined using a system identifier and present within a DOCTYPE header. These entities can access local or remote content. For example the below code contains an external XML entity that would fetch the content of /etc/passwd
and display it to the user rendered by username
.
<xml>
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<username>&xxe;</username>
</xml>
Other XXE Injection attacks can access local resources that may not stop returning data, possibly impacting application availability and leading to Denial of Service.
Remediation
Upgrade xmldom
to version 0.5.0 or higher.
References
medium severity
- Vulnerable module: axios
- Introduced through: browser-sync@2.29.3
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › browser-sync@2.29.3 › localtunnel@2.0.2 › axios@0.21.4
Overview
axios is a promise-based HTTP client for the browser and Node.js.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). An attacker can deplete system resources by providing a manipulated string as input to the format method, causing the regular expression to exhibit a time complexity of O(n^2)
. This makes the server to become unable to provide normal service due to the excessive cost and time wasted in processing vulnerable regular expressions.
PoC
const axios = require('axios');
console.time('t1');
axios.defaults.baseURL = '/'.repeat(10000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t1');
console.time('t2');
axios.defaults.baseURL = '/'.repeat(100000) + 'a/';
axios.get('/a').then(()=>{}).catch(()=>{});
console.timeEnd('t2');
/* stdout
t1: 60.826ms
t2: 5.826s
*/
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade axios
to version 0.29.0, 1.6.3 or higher.
References
medium severity
- Vulnerable module: browserslist
- Introduced through: babel-preset-env@1.7.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-preset-env@1.7.0 › browserslist@3.2.8
Overview
browserslist is a Share target browsers between different front-end tools, like Autoprefixer, Stylelint and babel-env-preset
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) during parsing of queries.
PoC by Yeting Li
var browserslist = require("browserslist")
function build_attack(n) {
var ret = "> "
for (var i = 0; i < n; i++) {
ret += "1"
}
return ret + "!";
}
// browserslist('> 1%')
//browserslist(build_attack(500000))
for(var i = 1; i <= 500000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
try{
browserslist(attack_str);
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
catch(e){
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade browserslist
to version 4.16.5 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation. It is possible to kill a renderer if it provides an unexpected FrameOwnerElementType
.
Remediation
Upgrade electron
to version 13.5.1, 12.2.1 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.8.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation.
in Internals, due to not treating %
as a special character in pathname resolution.
NOTE: This vulnerability is only exploitable when running on Windows.
Remediation
Upgrade electron
to version 18.3.8, 19.0.13 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.0.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Information Exposure. IPC messages sent from the main process to a subframe in the renderer process, through webContents.sendToFrame
, event.reply
or when using the remote
module, can in some cases be delivered to the wrong frame.
Remediation
Upgrade electron
to version 9.4.0, 10.2.0, 11.1.0, 12.0.0-beta.9 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.1.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Information Exposure. The is a side-channel information leakage in autofill.
Remediation
Upgrade electron
to version 11.4.0, 10.4.1 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@14.2.8.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Information Exposure where ImageBitmaps
that is created by webGL
contexts will fail to render.
Remediation
Upgrade electron
to version 14.2.8, 15.4.2, 16.2.0 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.9.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Information Exposure in Background Fetch, by exposing URLs during cross-origin redirects.
Remediation
Upgrade electron
to version 18.3.9, 19.0.12 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.1.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out-of-Bounds. An out of bounds write issue exists in engine.
Remediation
Upgrade electron
to version 13.5.0, 12.1.2 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@29.4.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Type Confusion via a crafted HTML page in the V8 engine.
**Note: ** This is only exploitable if the user navigates to or is redirected to the malicious page.
Remediation
Upgrade electron
to version 29.4.3 or higher.
References
medium severity
- Vulnerable module: glob-parent
- Introduced through: nodemon@1.19.4
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › nodemon@1.19.4 › chokidar@2.1.8 › glob-parent@3.1.0Remediation: Upgrade to nodemon@2.0.0.
Overview
glob-parent is a package that helps extracting the non-magic parent path from a glob string.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The enclosure
regex used to check for strings ending in enclosure containing path separator.
PoC by Yeting Li
var globParent = require("glob-parent")
function build_attack(n) {
var ret = "{"
for (var i = 0; i < n; i++) {
ret += "/"
}
return ret;
}
globParent(build_attack(5000));
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade glob-parent
to version 5.1.2 or higher.
References
medium severity
- Vulnerable module: lodash
- Introduced through: gulp@3.9.1
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › lodash@1.0.2
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber
, trim
and trimEnd
functions.
POC
var lo = require('lodash');
function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret + "1";
}
var s = build_blank(50000)
var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0)
var time1 = Date.now();
lo.toNumber(s)
var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1)
var time2 = Date.now();
lo.trimEnd(s)
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2)
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade lodash
to version 4.17.21 or higher.
References
medium severity
- Vulnerable module: minimatch
- Introduced through: gulp@3.9.1 and mocha@5.2.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-stream@3.1.18 › minimatch@2.0.10
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-stream@3.1.18 › glob@4.5.3 › minimatch@2.0.10Remediation: Upgrade to gulp@4.0.0.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › minimatch@0.2.14
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › glob@3.1.21 › minimatch@0.2.14
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › mocha@5.2.0 › minimatch@3.0.4Remediation: Upgrade to mocha@9.2.2.
Overview
minimatch is a minimal matching utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the braceExpand
function in minimatch.js
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade minimatch
to version 3.0.5 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@9.4.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Use After Free via the Blink component in chromium
.
Remediation
Upgrade electron
to version 9.4.2, 10.3.1, 11.2.2 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Input Validation due to insufficient data validation that exists in V8.
Remediation
Upgrade electron
to version 10.4.4, 12.0.6 or higher.
References
medium severity
- Vulnerable module: lodash
- Introduced through: gulp@3.9.1
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › gulp@3.9.1 › vinyl-fs@0.3.14 › glob-watcher@0.0.6 › gaze@0.5.2 › globule@0.1.0 › lodash@1.0.2
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It parses dates using regex strings, which may cause a slowdown of 2 seconds per 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade lodash
to version 4.17.11 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Exposure of Resource to Wrong Sphere. Inappropriate implementation in Background Fetch API in Google Chrome prior to 94.0.4606.54 allowed a remote attacker to leak cross-origin data via a crafted HTML page.
Remediation
Upgrade electron
to version 14.1.1, 13.5.2, 12.2.2 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@12.2.2.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Access Control. Inappropriate implementation in Background Fetch API in Google Chrome prior to 94.0.4606.54 allowed a remote attacker who had compromised the renderer process to leak cross-origin data via a crafted HTML page.
Remediation
Upgrade electron
to version 14.1.1, 13.5.2, 12.2.2 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@18.3.11.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Authentication by allowing the creation of cookies that have an empty name field and whose value impersonates a cookie name prefix.
Note:
Upgrading to the fixed version will delete any previously stored cookies that meet the conditions by causing them to fail their IsCanonical()
check.
Remediation
Upgrade electron
to version 18.3.11 or higher.
References
medium severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@15.5.3.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper implementation in Compositing.
Remediation
Upgrade electron
to version 15.5.3, 16.2.4 or higher.
References
low severity
- Vulnerable module: braces
- Introduced through: babel-plugin-istanbul@4.1.6 and babel-cli@6.26.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-plugin-istanbul@4.1.6 › test-exclude@4.2.3 › micromatch@2.3.11 › braces@1.8.5Remediation: Upgrade to babel-plugin-istanbul@5.0.1.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › babel-cli@6.26.0 › chokidar@1.7.0 › anymatch@1.3.2 › micromatch@2.3.11 › braces@1.8.5
Overview
braces is a Bash-like brace expansion, implemented in JavaScript.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (^\{(,+(?:(\{,+\})*),*|,*(?:(\{,+\})*),+)\}
) in order to detects empty braces. This can cause an impact of about 10 seconds matching time for data 50K characters long.
Disclosure Timeline
- Feb 15th, 2018 - Initial Disclosure to package owner
- Feb 16th, 2018 - Initial Response from package owner
- Feb 18th, 2018 - Fix issued
- Feb 19th, 2018 - Vulnerability published
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade braces
to version 2.3.1 or higher.
References
low severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@10.4.4.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Out Of Bounds Read. Blit11 would clip the destination rectangle with the destination size but ignore the result. gl::ClipRectangle
returns false when the rectangles do not intersect at all, indicating the blit can be skipped.
Remediation
Upgrade electron
to version 10.4.4, 11.4.4, 12.0.6 or higher.
References
low severity
- Vulnerable module: minimist
- Introduced through: mocha@5.2.0
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › mocha@5.2.0 › mkdirp@0.5.1 › minimist@0.0.8Remediation: Upgrade to mocha@6.2.3.
Overview
minimist is a parse argument options module.
Affected versions of this package are vulnerable to Prototype Pollution due to a missing handler to Function.prototype
.
Notes:
This vulnerability is a bypass to CVE-2020-7598
The reason for the different CVSS between CVE-2021-44906 to CVE-2020-7598, is that CVE-2020-7598 can pollute objects, while CVE-2021-44906 can pollute only function.
PoC by Snyk
require('minimist')('--_.constructor.constructor.prototype.foo bar'.split(' '));
console.log((function(){}).foo); // bar
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade minimist
to version 0.2.4, 1.2.6 or higher.
References
low severity
- Vulnerable module: electron
- Introduced through: electron@1.8.8
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › electron@1.8.8Remediation: Upgrade to electron@13.6.6.
Overview
electron is a framework which lets you write cross-platform desktop applications using JavaScript, HTML and CSS.
Affected versions of this package are vulnerable to Improper Access Control via the web Bluetooth API, if the app has not configured a custom select-bluetooth-device
event handler.
The device that is accessed is random and the attacker would have no way of selecting a specific device.
Workarounds:
Adding this code to your app can workaround the issue.
app.on('web-contents-created', (event, webContents) => {
webContents.on('select-bluetooth-device', (event, devices, callback) => {
// Prevent default behavior
event.preventDefault();
// Cancel the request
callback('');
});
});
Remediation
Upgrade electron
to version 13.6.6, 14.2.4, 15.3.5, 16.0.6, 17.0.0-alpha.6 or higher.
References
low severity
- Vulnerable module: send
- Introduced through: browser-sync@2.29.3
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › browser-sync@2.29.3 › send@0.16.2Remediation: Upgrade to browser-sync@3.0.3.
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › browser-sync@2.29.3 › serve-static@1.13.2 › send@0.16.2Remediation: Upgrade to browser-sync@3.0.3.
Overview
send is a Better streaming static file server with Range and conditional-GET support
Affected versions of this package are vulnerable to Cross-site Scripting due to improper user input sanitization passed to the SendStream.redirect()
function, which executes untrusted code. An attacker can execute arbitrary code by manipulating the input parameters to this method.
Note:
Exploiting this vulnerability requires the following:
The attacker needs to control the input to
response.redirect()
Express MUST NOT redirect before the template appears
The browser MUST NOT complete redirection before
The user MUST click on the link in the template
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade send
to version 0.19.0, 1.1.0 or higher.
References
low severity
- Vulnerable module: serve-static
- Introduced through: browser-sync@2.29.3
Detailed paths
-
Introduced through: riko@Donmclean/riko#38d8cc54e5fd1a3758481dd9c3871196f50262ff › browser-sync@2.29.3 › serve-static@1.13.2Remediation: Upgrade to browser-sync@3.0.3.
Overview
serve-static is a server.
Affected versions of this package are vulnerable to Cross-site Scripting due to improper sanitization of user input in the redirect
function. An attacker can manipulate the redirection process by injecting malicious code into the input.
Note
To exploit this vulnerability, the following conditions are required:
The attacker should be able to control the input to
response.redirect()
express must not redirect before the template appears
the browser must not complete redirection before:
the user must click on the link in the template
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade serve-static
to version 1.16.0, 2.1.0 or higher.