Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
trace = go.Scatter(
name='Time for molNum = {}'.format(num_molecules),
x=x_list,
y=y1_list,
mode='markers+lines',
marker=dict(
symbol=key_to_symbol[(num_molecules,'wall_time')],
size=10,
),
line=dict(
color='black',
dash='solid',
)
)
data.append(trace)
trace = go.Scatter(
name='RAM for molNum = {}'.format(num_molecules),
x=x_list,
y=y2_list,
yaxis='y2',
mode='markers+lines',
marker=dict(
symbol=key_to_symbol[(num_molecules,'mem')],
size=10,
),
line=dict(
color='black',
dash='longdash',
)
)
print(key_to_symbol[(num_molecules,'mem')],)
data.append(trace)
def test_user_interventions_count_linechart():
df = load_chat_as_df()
fb = FigureBuilder(df=df)
fig = fb.user_interventions_count_linechart()
assert isinstance(fig, go.Figure)
assert ('data' in fig and 'layout' in fig)
plt.ylabel('Population count (B)')
plt.show()
###############################################################################
# ## Stacked bar plot with plotly
###############################################################################
# Stacked area plots (with cumulated values computed depending on
# selected legends) are
# [on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For
# now we just do a stacked bar plot.
import plotly.offline as offline
import plotly.graph_objs as go
offline.init_notebook_mode()
""
bars = [go.Bar(x=population.index, y=population[zone], name=zone)
for zone in zones]
fig = go.Figure(data=bars,
layout=go.Layout(title='World population',
barmode='stack'))
offline.iplot(fig)
data = history.load_pair_history(pair=pair, ticker_interval='1m',
datadir=testdatadir, timerange=timerange)
indicators1 = ["ema10"]
indicators2 = ["macd"]
# Generate buy/sell signals and indicators
strat = DefaultStrategy(default_conf)
data = strat.analyze_ticker(data, {'pair': pair})
fig = generate_empty_figure()
# Row 1
fig1 = add_indicators(fig=deepcopy(fig), row=1, indicators=indicators1, data=data)
figure = fig1.layout.figure
ema10 = find_trace_in_fig_data(figure.data, "ema10")
assert isinstance(ema10, go.Scatter)
assert ema10.yaxis == "y"
fig2 = add_indicators(fig=deepcopy(fig), row=3, indicators=indicators2, data=data)
figure = fig2.layout.figure
macd = find_trace_in_fig_data(figure.data, "macd")
assert isinstance(macd, go.Scatter)
assert macd.yaxis == "y3"
# No indicator found
fig3 = add_indicators(fig=deepcopy(fig), row=3, indicators=['no_indicator'], data=data)
assert fig == fig3
assert log_has_re(r'Indicator "no_indicator" ignored\..*', caplog)
fig1 = generate_empty_figure()
# nothing happens when no trades are available
fig = plot_trades(fig1, None)
assert fig == fig1
assert log_has("No trades found.", caplog)
pair = "ADA/BTC"
filename = testdatadir / "backtest-result_test.json"
trades = load_backtest_data(filename)
trades = trades.loc[trades['pair'] == pair]
fig = plot_trades(fig, trades)
figure = fig1.layout.figure
# Check buys - color, should be in first graph, ...
trade_buy = find_trace_in_fig_data(figure.data, "trade_buy")
assert isinstance(trade_buy, go.Scatter)
assert trade_buy.yaxis == 'y'
assert len(trades) == len(trade_buy.x)
assert trade_buy.marker.color == 'green'
trade_sell = find_trace_in_fig_data(figure.data, "trade_sell")
assert isinstance(trade_sell, go.Scatter)
assert trade_sell.yaxis == 'y'
assert len(trades) == len(trade_sell.x)
assert trade_sell.marker.color == 'red'
def scatter_plot(coin_select, datefilter):
df = filter_reddit(df_scatter, coin_select, datefilter)
data = [
go.Scatter(
y=df[df['name'] == i]['post_count'],
x=df[df['name'] == i]['market_cap_usd'],
opacity=0.8,
hovertext=df[df['name'] == i]['created'],
mode = 'markers',
marker = dict(size = 15),
name=i
) for i in coin_select
]
layout = go.Layout(
title='Mentions vs Marketcap',
xaxis=dict(
title='Marketcap (Log Scale)',
type='log',
autorange=True,
),
hovermode='closest',
yaxis=dict(
title='Mention Count',
autorange=True
)
)
figure = {'data':data,
targets.extend(list(range(len(df.index), len(df.index) + len(df.loc[item]))))
values.extend([j for j in df.loc[item].values])
if type(item) is tuple:
labels.extend([str(item[0]) + ' -> ' + str(jtem[0]) for jtem in df.loc[item].index])
else:
labels.extend([str(item) + ' -> ' + str(jtem) for jtem in df.loc[item].index])
colorscales = [dict(label=label, colorscale=[[0, linksColor], [1, linksColor]]) for label in labels]
if not nodeColors is None:
for i in range(len(sources)):
if nodeColors[sources[i]] == nodeColors[targets[i]]:
newColor = ','.join(nodeColors[sources[i]].split(',')[:3] + ['0.6)'])
colorscales[i] = dict(label=labels[i], colorscale=[[0, newColor], [1, newColor]])
fig = go.Figure(data=[go.Sankey(valueformat = '', valuesuffix = '',
node = dict(pad = 20, thickness = 40, line = dict(color = 'white', width = 0.5), label = nodeLabels, color = nodeColors,),
link = dict(source = sources, target = targets, value = values, label = labels, colorscales = colorscales, hoverinfo='all'))]) #line ={'color':'rgba(255,0,0,0.8)', 'width':0.1}
if not title is None:
fig.update_layout(title_text=title, font_size=10)
fig.update_layout(margin=dict(l=border, r=border, t=border, b=border))
try:
fig.write_image(os.path.join(self.saveDir, self.dataName + nameAppend + '.png'), width=width, height=height, scale=quality)
except Exception as exception:
if self.verbose >= 2:
print('Cannot save static image (likely due to missing orca). Saving to interactive html')
attemptSavingHTML = True
model.fit(df[xvars])
# TODO: Find a meaningful way (metric) to notify the user of model score.
try:
layout = [[html.H4(f"Clustering model scored: {model.score(df[xvars])}")]]
except AttributeError:
# model without a score function
layout = [[html.H4(f"No score for this method.")]]
labels = model.labels_
# TODO: If Y is given, visualize the (in)correctly grouped points.
# If we have >=2 variables, visualize the clusters
if len(xvars) >= 3:
trace1 = go.Scatter3d(x=df[xvars[0]],
y=df[xvars[1]],
z=df[xvars[2]],
showlegend=False,
mode='markers',
marker=dict(
color=labels.astype(np.float),
line={'color': 'black', 'width': 1}
))
layout += [{
'data': [trace1],
'layout': layouts.default_2d(xvars[0], xvars[1])
}]
elif len(xvars) == 2:
trace = scatterplot(df[xvars[0]], df[xvars[1]],
def _update_spatial_unit(self, uid, rely1, rely2, rely3, rely4, rely5,
state):
print('update_spatial_unit')
_initial = False
_update = False
if not state:
_initial = True
elif not state['data'][0]['customdata'] == uid:
_update = True
if _initial or _update:
cur_A = self.cnmf['A'].sel(unit_id=uid if not uid is None else [])
trace = [
go.Heatmap(
x=cur_A.coords['width'].values,
y=cur_A.coords['height'].values,
z=cur_A.values,
colorscale='Viridis',
colorbar=dict(x=1),
hoverinfo='none',
customdata=uid)
]
if _update:
state.update(data=trace)
if _initial:
layout = go.Layout(
title="Spatial Component of unit: {}".format(uid),
xaxis=dict(
title='width',
range=[0, self._w],
stream_ids=stream_ids
)
today = datetime.date.today()
counts = [
matad.matcoll.count(), matad.doicoll.count(),
len(matad.get_all_dois())
]
names = ['materials', 'requested DOIs', 'validated DOIs']
data = Data([
Scatter(
x=[today], y=[counts[idx]], name=names[idx],
stream=dict(token=stream_ids[idx], maxpoints=10000)
) for idx,count in enumerate(counts)
])
filename = 'dois_{}'.format(today)
print py.plot(data, filename=filename, auto_open=False)
else:
# generate records for either n or all (n=0) not-yet-submitted materials
# OR generate records for specific materials (submitted or not)
osti = OstiRecord(l=args.l, n=args.n, db_yaml=db_yaml)
osti.submit()