Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
limits = self.df.limits(binby, limits)
extent, counts = self._grid(expr=binby, what=what, shape=shape, limits=limits,
f=_widget_f.v_model, n=n, selection=selection, progress=progress)
cbar = go.heatmap.ColorBar(title=colorbar_label)
heatmap = go.Heatmap(z=counts, colorscale=colormap, zmin=vmin, zmax=vmax,
x0=extent[0], dx=np.abs((extent[1]-extent[0])/shape),
y0=extent[2], dy=np.abs((extent[3]-extent[2])/shape),
colorbar=cbar, showscale=colorbar,
hoverinfo=['x', 'y', 'z'])
dummy_scatter = go.Scatter(y=[None])
title = go.layout.Title(text=title, xanchor='center', x=0.5, yanchor='top')
layout = go.Layout(height=figure_height,
width=figure_width,
title=title,
xaxis=go.layout.XAxis(title='x', range=limits[0]),
yaxis=go.layout.YAxis(title='y', range=limits[1], scaleanchor='x', scaleratio=1))
if equal_aspect:
layout['yaxis']['scaleanchor'] = 'x'
layout['yaxis']['scaleratio'] = 1
fig = go.FigureWidget(data=[dummy_scatter, heatmap], layout=layout)
@_widget_progress_output.capture(clear_output=True)
def _pan_and_zoom(layout, _xrange, _yrange):
limits = [_yrange, _xrange]
extent, counts = self._grid(expr=binby, what=what, shape=shape, limits=limits, f=_widget_f.v_model, progress=True)
with fig.batch_update():
fig.data[1]['z'] = counts
meterValues.append(float(baseLabels[i+1]) - float(baseLabels[i]))
meterSum += meterValues[i]
meterValues[0] = meterSum
# Dial path. Apply angle from full left position.
rangeValue = float(meterValues[0])
minValue=float(baseLabels[1])
chartCenter=0.5
dialTip=chartCenter-0.12
dialAngle=(value-minValue)*180/rangeValue
dialPath = 'M ' + rotatePoint((chartCenter,0.5),(chartCenter,0.485),dialAngle, 'dialPath') + ' L ' + rotatePoint((chartCenter,0.5),(dialTip,0.5),dialAngle, 'dialPath') + ' L ' + rotatePoint((chartCenter,0.5),(chartCenter,0.515),dialAngle, 'dialPath') + ' Z'
infoText=(str(value) + str(suffix))
# Gauge
meterChart = go.Pie(
values=meterValues, labels=meterLabels,
marker=dict(colors=colors,
line=dict(width=0) # Switch line width to 0 in production
),
name="Gauge", hole=.3, direction="clockwise", rotation=90,
showlegend=False, textinfo="label", textposition="inside", hoverinfo="none",
sort=False
)
# Layout
layout = go.Layout(
xaxis=dict(showticklabels=False, autotick=False, showgrid=False, zeroline=False,),
yaxis=dict(showticklabels=False, autotick=False, showgrid=False, zeroline=False,),
shapes=[dict(
type='path', path=dialPath, fillcolor='rgba(44, 160, 101, 1)',
line=dict(width=0.5), xref='paper', yref='paper'),
return w
else:
maxid = max(clrs)
clr_set = set(clrs)
cmap = [
[
c / maxid,
"rgb({},{},{})".format(
self.index_to_color[c][0],
self.index_to_color[c][1],
self.index_to_color[c][0],
),
]
for c in clr_set
]
trace1 = go.Volume(
x=np.asarray(x).transpose(),
y=np.asarray(y).transpose(),
z=np.asarray(z).transpose(),
value=np.asarray(clrs).transpose(),
isomin=0.1,
isomax=0.8,
colorscale=cmap,
opacity=0.1, # needs to be small to see through all surfaces
surface_count=21, # needs to be a large number for good volume rendering
)
data = [trace1]
layout = go.Layout(margin=dict(l=0, r=0, b=0, t=0))
fig = go.Figure(data=data, layout=layout)
self.viz.plotlyplot(fig)
return fig
# colorscale='Magma')]
#layout = go.Layout(
# title='Average read coverage for all loci',
# xaxis = dict(ticks='', nticks=len(x_axis)),
# yaxis = dict(ticks='' ,nticks=int(len(y_axis)/10),autorange='reversed'),
#)
#figure = go.Figure(data=data, layout=layout)
#py.plot(figure)
#py.image.save_as(figure, format = 'pdf', filename='./tests/read_coverage_per_locus.pdf', width = 1080, height = 1000)
#help(py.image.save_as)
## 2. Alternative plot with reversed axes
trans_z_axis = np.transpose(z_axis)
data1 = go.Heatmap(z=trans_z_axis,
x=y_axis,
y=x_axis,
zmin = 1.0,
zmax = 20.0,
#colorscale='Viridis',
colorscale='Magma')
data = [data1]
lenx1 = len(x_axis)
leny1 = len(y_axis)
layout = go.Layout(
title='Average read coverage for all loci',
xaxis = dict(ticks='',nticks=int(len(y_axis)/20)),
yaxis = dict(nticks=len(x_axis)),
)
figure1 = go.Figure(data=data, layout=layout)
def configure_axes(args, constructor, fig, orders):
configurators = {
go.Scatter: configure_cartesian_axes,
go.Scattergl: configure_cartesian_axes,
go.Bar: configure_cartesian_axes,
go.Box: configure_cartesian_axes,
go.Violin: configure_cartesian_axes,
go.Histogram: configure_cartesian_axes,
go.Histogram2dContour: configure_cartesian_axes,
go.Histogram2d: configure_cartesian_axes,
go.Scatter3d: configure_3d_axes,
go.Scatterternary: configure_ternary_axes,
go.Scatterpolar: configure_polar_axes,
go.Scatterpolargl: configure_polar_axes,
go.Barpolar: configure_polar_axes,
go.Scattermapbox: configure_mapbox,
go.Choroplethmapbox: configure_mapbox,
go.Densitymapbox: configure_mapbox,
go.Scattergeo: configure_geo,
go.Choropleth: configure_geo,
}
if constructor in configurators:
configurators[constructor](args, fig, orders)
y=[td.seconds/3600 for td in totals.values()],
hoverinfo='text',
textposition='outside',
text=[_duration_string_short(td) for td in totals.values()]
)
layout_args = utils.default_graph_layout_options()
layout_args['barmode'] = 'stack'
layout_args['title'] = _('<b>Sleep Totals</b>')
layout_args['xaxis']['title'] = _('Date')
layout_args['xaxis']['rangeselector'] = utils.rangeselector_date()
layout_args['yaxis']['title'] = _('Hours of sleep')
fig = go.Figure({
'data': [trace],
'layout': go.Layout(**layout_args)
})
output = plotly.plot(fig, output_type='div', include_plotlyjs=False)
return utils.split_graph_output(output)
index = 0
for node in G.nodes():
x, y = G.nodes[node]['pos']
hovertext = "CustomerName: " + str(G.nodes[node]['CustomerName']) + "<br>" + "AccountType: " + str(
G.nodes[node]['Type'])
text = node1['Account'][index]
node_trace['x'] += tuple([x])
node_trace['y'] += tuple([y])
node_trace['hovertext'] += tuple([hovertext])
node_trace['text'] += tuple([text])
index = index + 1
traceRecode.append(node_trace)
################################################################################################################################################################
middle_hover_trace = go.Scatter(x=[], y=[], hovertext=[], mode='markers', hoverinfo="text",
marker={'size': 20, 'color': 'LightSkyBlue'},
opacity=0)
index = 0
for edge in G.edges:
x0, y0 = G.nodes[edge[0]]['pos']
x1, y1 = G.nodes[edge[1]]['pos']
hovertext = "From: " + str(G.edges[edge]['Source']) + "<br>" + "To: " + str(
G.edges[edge]['Target']) + "<br>" + "TransactionAmt: " + str(
G.edges[edge]['TransactionAmt']) + "<br>" + "TransactionDate: " + str(G.edges[edge]['Date'])
middle_hover_trace['x'] += tuple([(x0 + x1) / 2])
middle_hover_trace['y'] += tuple([(y0 + y1) / 2])
middle_hover_trace['hovertext'] += tuple([hovertext])
index = index + 1
traceRecode.append(middle_hover_trace)
def gen_plotly_layout(self,
width=None,
height=None,
title=None,
keep_ui_state=True,
subplot=False,
need_range_selector=True,
**layout_params):
if keep_ui_state:
uirevision = True
else:
uirevision = None
layout = go.Layout(showlegend=True,
uirevision=uirevision,
height=height,
width=width,
title=title,
annotations=to_annotations(self.annotation_df),
yaxis=dict(
autorange=True,
fixedrange=False,
zeroline=False
),
**layout_params)
if subplot:
layout.yaxis2 = dict(autorange=True,
fixedrange=False,
zeroline=False)
# Step size of the mesh. Decrease to increase the quality of the VQ.
h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max].
# Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
print(x_min, x_max, y_min, y_max)
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Obtain labels for each point in mesh. Use last trained model.
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
back = go.Heatmap(x=xx[0][:len(Z)],
y=xx[0][:len(Z)],
z=Z,
showscale=False,
colorscale=matplotlib_to_plotly(plt.cm.Paired, len(Z)))
markers = go.Scatter(x=reduced_data[:, 0],
y=reduced_data[:, 1],
showlegend=False,
mode='markers',
marker=dict(
size=3, color='black'))
# Plot the centroids as a white
centroids = kmeans.cluster_centers_
center = go.Scatter(x=centroids[:, 0],
y=centroids[:, 1],
continue
dimension = {
'label': col_name,
}
if isinstance(column.dtype, pd.CategoricalDtype):
dimension['range'] = [df[col_name + '_encoded'].min(), df[col_name + '_encoded'].max()]
dimension['values'] = df[col_name + '_encoded'].values
dimension['tickvals'] = np.unique(column.cat.codes)
dimension['ticktext'] = column.cat.categories.values
else:
dimension['range'] = [column.min(), column.max()]
dimension['values'] = column.values
dimensions.append(dimension)
data = [
go.Parcoords(
line=dict(color='blue'),
# dimensions=list([
# dict(range=[1, 5],
# constraintrange=[1, 2],
# label='A', values=[1, 4]),
# dict(range=[1.5, 5],
# tickvals=[1.5, 3, 4.5],
# label='B', values=[3, 1.5]),
# dict(range=[1, 5],
# tickvals=[1, 2, 4, 5],
# label='C', values=[2, 4],
# ticktext=['text 1', 'text 2', 'text 3', 'text 4']),
# dict(range=[1, 5],
# label='D', values=[4, 2])
# ]),
dimensions=dimensions,