Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def _update_spatial_unit(self, uid, rely1, rely2, rely3, rely4, rely5,
state):
print('update_spatial_unit')
_initial = False
_update = False
if not state:
_initial = True
elif not state['data'][0]['customdata'] == uid:
_update = True
if _initial or _update:
cur_A = self.cnmf['A'].sel(unit_id=uid if not uid is None else [])
trace = [
go.Heatmap(
x=cur_A.coords['width'].values,
y=cur_A.coords['height'].values,
z=cur_A.values,
colorscale='Viridis',
colorbar=dict(x=1),
hoverinfo='none',
customdata=uid)
]
if _update:
state.update(data=trace)
if _initial:
layout = go.Layout(
title="Spatial Component of unit: {}".format(uid),
xaxis=dict(
title='width',
range=[0, self._w],
data_list[i].append(data[all_endpoints[i]][versions[j]])
layout = go.Layout(
autosize=True,
height=800,
plot_bgcolor='rgba(249,249,249,1)',
showlegend=False,
title='Heatmap of hits per endpoint per version',
xaxis=go.XAxis(title='Versions', type='category'),
yaxis=dict(type='category', autorange='reversed'),
margin=go.Margin(
l=200
)
)
trace = go.Heatmap(
z=data_list,
x=versions,
y=all_endpoints,
colorscale=[[0, 'rgb(255, 255, 255)'], [0.01, 'rgb(240,240,240)'],[1, 'rgb(1, 1, 1)']],
colorbar=dict(
titleside='top',
tickmode='array',
tickvals=[1, 0],
ticktext=['100%', '0%'],
# ticks='outside'
)
)
return plotly.offline.plot(go.Figure(data=[trace], layout=layout), output_type='div', show_link=False)
synergies = np.loadtxt('pretrained/synergies_all.csv')
for i in range(114):
synergies[i, i] = 0.5
hero_dict = get_hero_dict()
x_labels = []
for i in range(114):
if i != 23:
x_labels.append(hero_dict[i + 1])
synergies = np.delete(synergies, [23], 0)
synergies = np.delete(synergies, [23], 1)
trace = go.Heatmap(z=synergies,
x=x_labels,
y=x_labels,
colorscale='Viridis')
layout = go.Layout(
title='Hero synergies',
width=1000,
height=1000,
xaxis=dict(ticks='',
nticks=114,
tickfont=dict(
size=8,
color='black')),
yaxis=dict(ticks='',
nticks=114,
tickfont=dict(
x_range = np.linspace(spn.domains[featureId][0], spn.domains[featureId][-1], detail)
query = np.repeat(evidence, x_range.shape[0], axis=0)
query[:,featureId] = x_range
y_range = np.exp(marg_spn.eval(query))
plt.plot(x_range, y_range)
plt.ylim(ymin=0)
plt.ylim(ymax=np.amax(y_range) + 1)
Scatter(
x = random_x,
y = random_y0,
mode = 'lines',
name = 'lines'
)
data = [Heatmap(z=result,
y=np.linspace(spn.domains[featureId_y][0], spn.domains[featureId_y][-1], detail) if not y_cat else y_names,
x=np.linspace(spn.domains[featureId_x][0], spn.domains[featureId_x][-1], detail) if not x_cat else x_names,
colorbar=ColorBar(
title='Colorbar'
),
colorscale='Hot')]
layout = dict(width=450,
height=450,
xaxis=dict(title=spn.featureNames[featureId_y]),
yaxis=dict(title=spn.featureNames[featureId_x])
)
if fname is None:
return {'data': data, 'layout': layout}
else:
raise NotImplementedError
# Creating the plotly figure, which is also a widget
x = _ensure_string_from_expression(x)
y = _ensure_string_from_expression(y)
binby = []
for expression in [y, x]:
if expression is not None:
binby = [expression] + binby
limits = self.df.limits(binby, limits)
extent, counts = self._grid(expr=binby, what=what, shape=shape, limits=limits,
f=_widget_f.v_model, n=n, selection=selection, progress=progress)
cbar = go.heatmap.ColorBar(title=colorbar_label)
heatmap = go.Heatmap(z=counts, colorscale=colormap, zmin=vmin, zmax=vmax,
x0=extent[0], dx=np.abs((extent[1]-extent[0])/shape),
y0=extent[2], dy=np.abs((extent[3]-extent[2])/shape),
colorbar=cbar, showscale=colorbar,
hoverinfo=['x', 'y', 'z'])
dummy_scatter = go.Scatter(y=[None])
title = go.layout.Title(text=title, xanchor='center', x=0.5, yanchor='top')
layout = go.Layout(height=figure_height,
width=figure_width,
title=title,
xaxis=go.layout.XAxis(title='x', range=limits[0]),
yaxis=go.layout.YAxis(title='y', range=limits[1], scaleanchor='x', scaleratio=1))
if equal_aspect:
layout['yaxis']['scaleanchor'] = 'x'
layout['yaxis']['scaleratio'] = 1
objs = [
obj.title
for obj in project.digital_objects.all()
]
scores = [
[
np.mean([
answer.value()
for answer in models.Answer.objects.filter(metric=metric, assessment__target=obj)
])
for assessment in obj.assessments.all()
for metric in assessment.rubric.metrics.all()
]
for obj in project.digital_objects.all()
]
trace = go.Heatmap(z=scores, x=metrics, y=objs)
data = [trace]
layout = go.Layout(xaxis=dict(title="Metrics",ticks='',
showticklabels=False, automargin=True),yaxis=dict(title='Digital Objects',ticks='',
showticklabels=True, automargin=True))
fig = go.Figure(data=data, layout=layout)
yield _iplot(fig)
def _update_movies_res(self, sig_mov, rely1, rely2, rely3, rely4, rely5,
state):
print('update movie res')
sig_mov = json.loads(sig_mov)
_initial = False
_update = False
if state:
if not state['data'][0]['customdata'] == sig_mov['f']:
_update = True
else:
_initial = True
if _initial or _update:
print("updating res trace")
trace = [
go.Heatmap(
x=self.cur_res.coords['width'].values,
y=self.cur_res.coords['height'].values,
z=self.cur_res.values,
colorscale='Viridis',
colorbar=dict(x=1),
customdata=sig_mov,
hoverinfo='none')
]
if _update:
state.update(data=trace)
if _initial:
layout = go.Layout(
title="Residual at frame: {}".format(sig_mov['f']),
xaxis=dict(
title='width',
range=[0, self._w],
'font': {'color': colors['text']}},
plot_bgcolor=colors['background'],
paper_bgcolor=colors['background'],
font={'color': colors['text']},
xaxis={'rangemode': 'tozero'},
yaxis={'rangemode': 'tozero'},
uirevision=True
)
)
colorscale = [[0, 'rgb(100, 100, 100)'],
[0.5, 'rgb(0, 0, 0)'],
[1, 'rgb(255, 255, 255)']]
fig_board = go.Figure(
data=[
go.Heatmap(z=[[0] * 10] * 20, hoverinfo='none',
colorscale=colorscale, showscale=False,
xgap=1, ygap=1)
],
layout=go.Layout(
plot_bgcolor=colors['background'],
paper_bgcolor=colors['background'],
font={'color': colors['text']},
height=700,
width=300,
xaxis=dict(visible=False),
yaxis=dict(visible=False),
margin=dict(l=5, t=5, b=5, r=5),
hovermode=False
),
)
[0.6666666666666666, 'rgb(199,234,229)'], [0.7777777777777778, 'rgb(128,205,193)'],
[0.8888888888888888, 'rgb(53,151,143)'], [1.0, 'rgb(1,102,94)']]
xh = map(list, zip(*NanoLayout))
yh = map(list, zip(*NanoPlate))
zh = map(list, zip(*NanoBasePlate))
hovertext=[[] for i in range(len(xh))]
for x1, y1 in enumerate(xh):
for x2, y2 in enumerate(y1):
hovertext[x1].append('<b>CHANNEL:</b> {}<br><b>RN:</b> {}<br><b>BN:</b> {}'.format(y2, yh[x1][x2], zh[x1][x2]))
trace = go.Heatmap(name="ReadNHeat", z=map(list, zip(*NanoPlate)), x=range(1, 33), y=range(1, 17),
text=hovertext, hoverinfo="text", xgap=23, ygap=8, colorscale=owncolorscale,
colorbar=dict(y=0.77, len=0.470, exponentformat="SI")) # y=0.77,
trace1 = go.Heatmap(name="BaseNHeat", z=map(list, zip(*NanoBasePlate)), x=range(1, 33), y=range(1, 17),
text=hovertext, hoverinfo="text", xgap=23, ygap=8, colorscale=owncolorscale,
colorbar=dict(y=0.77, len=0.470, exponentformat="SI"), visible=False)
fig = plotly.tools.make_subplots(rows=13, cols=1, shared_xaxes=False,
specs=[[{'rowspan': 6}], [None], [None], [None], [None], [None], [None],
[{'rowspan': 2}], [None], [{'rowspan': 2}], [None], [None],
[{'rowspan': 1}]],
vertical_spacing=0.001, print_grid=False)
log.debug("Heatmaps ready!")
VisibleData = [False] * (513 * 10)
updatemenus = list([
dict(type="buttons",
active=-1,
buttons=list([
yaxis=dict(title='Mel Coefficient (index)',))
def normalize_signal(signal):
signal = np.double(signal)
signal = signal / (2.0 ** 15)
return (signal - signal.mean()) / ((np.abs(signal)).max() + 0.0000000001)
if __name__ == '__main__':
[Fs, s] = wavfile.read("../data/sample_music.wav")
s = normalize_signal(s)
S = librosa.feature.melspectrogram(s, Fs, None, int(Fs * 0.020),
int(Fs * 0.020), power=2)
# create frequency and time axes
f = list(range(S.shape[0]))
t = [float(t * int(Fs * 0.020)) / Fs for t in range(S.shape[1])]
heatmap = go.Heatmap(z=S, y=f, x=t)
plotly.offline.plot(go.Figure(data=[heatmap], layout=layout),
filename="temp.html", auto_open=True)