How to use the plotly.tools function in plotly

To help you get started, we’ve selected a few plotly examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github secsilm / bifrost / app.py View on Github external
def update_graph(n):
    infos = get_infos()
    device_info = infos["devices"]
    fig = tools.make_subplots(
        rows=2,
        cols=2,
        subplot_titles=(
            "GPU Util(%)",
            "Memory Usage Rate(%)",
            "Temperature(℃)",
            "Fan Speed(%)",
        ),
        shared_xaxes=False,
        print_grid=False,
    )
    x = [f"{d.name} {d.id}" for d in device_info]
    free = [d.free / (1024.0 ** 2) for d in device_info]
    used = [d.used / (1024.0 ** 2) for d in device_info]
    total = [d.total / (1024.0 ** 2) for d in device_info]
    gpu_util = [d.gpu_util for d in device_info]
github basalamader / Job-Parser / Scraps.py View on Github external
def graph_parsed_data(self, username, api_key):

        '''
         At this process the program will access the Plotly api and graph the features that/
        were given by the first parsing process. The attributes that it will take in will be Api Username,
        ApiPassword or api_key
        :param username: this accesses is the api Username that you initially added in the first process.
        :param api_key: this is the api key that you receive after registration.
        :return: Final graph
        '''

        tls.set_credentials_file(username=username, api_key=api_key)
        data = [
            go.Scatter(
                x=self.df['jobs'], # assign x as the dataframe column 'x'
                y=self.df['number of openings']

            )
        ]
        final_graph = py.plot(data, filename='pandas/basic-bar')
        return final_graph
github openml / openml.org / src / client / dash / callbacks.py View on Github external
else:
            return [], []
        df = pd.read_json(df_json, orient='split')
        dff = pd.DataFrame(rows)
        attributes = []
        if len(selected_row_indices) != 0:
            dff = dff.loc[selected_row_indices]
            attributes = dff["Attribute"].values
            types = dff["DataType"].values
        if len(attributes) == 0:
            fig = tools.make_subplots(rows=1, cols=1)
            trace1 = go.Scatter(x=[0, 0, 0], y=[0, 0, 0])
            fig.append_trace(trace1, 1, 1)
        else:
            numplots = len(attributes)
            fig = tools.make_subplots(rows=numplots, cols=1)
            i = 0
            for attribute in attributes:
                if types[i]=="numeric":
                    trace1 = {
                        "type": 'violin',
                        "x": df[attribute],
                        "box": {
                            "visible": True
                        },
                        "line": {
                            "color": 'black'
                        },
                        "meanline": {
                            "visible": True
                        },
                        "fillcolor": 'steelblue',
github plotly / dash-table-experiments / usage.py View on Github external
def update_figure(rows, selected_row_indices):
    dff = pd.DataFrame(rows)
    fig = plotly.tools.make_subplots(
        rows=3, cols=1,
        subplot_titles=('Life Expectancy', 'GDP Per Capita', 'Population',),
        shared_xaxes=True)
    marker = {'color': ['#0074D9']*len(dff)}
    for i in (selected_row_indices or []):
        marker['color'][i] = '#FF851B'
    fig.append_trace({
        'x': dff['country'],
        'y': dff['lifeExp'],
        'type': 'bar',
        'marker': marker
    }, 1, 1)
    fig.append_trace({
        'x': dff['country'],
        'y': dff['gdpPercap'],
        'type': 'bar',
github fgr1986 / rram_multilevel_driver / python_post_study / load_resistors.py View on Github external
# In[8]:


# find target gaps for each target resistance at v_read
for g_idx, g in enumerate(sim_read_r):
    for t_idx, r in enumerate(g):
        new_r, r_idx = find_nearest_sorted(last_r_read[g_idx, :], r)
        sim_read_r[g_idx, t_idx] = new_r
        required_loads[g_idx, t_idx] = r_loads[r_idx]


# In[9]:


if plot_2d:
    fig_r = plotly.tools.make_subplots(rows=1, cols=2)

    for g_idx, g in enumerate(required_loads):
        fig_r.append_trace(
            plotly.graph_objs.Scatter(
                x=simple_index,
                y=g,
                mode='lines+markers',
                name='load_r for initial gap ' + str(initial_gaps[g_idx]),
                xaxis='x1',
                yaxis='y1'
            ), 1, 1)

        fig_r.append_trace(
            plotly.graph_objs.Scatter(
                x=simple_index,
                y=sim_read_r[g_idx,:],
github JustinBurg / IoT_Predictive_Maintenance_Demo / Stream_IoT_Prediction_Dashboard_plotly.py View on Github external
s_1.write(dict(x=x1,y=y1))
            s_2.write(dict(x=x2,y=y2))
            #predicted_metric_list.append(int(predicted_value))
            print ("Next timestamp aggregate metric prediction: " + str(predicted_value))
            if (-200 <= predicted_value <= 450):
                print ("Forecast does not exceed threshold for alert!\n")
            else:
                print ("Forecast exceeds acceptable threshold - Alert Sent!\n")
            del total_list_for_RNN[0]


IoT_Demo_Topic = '/user/user01/iot_stream:sensor_record' 
max = 402
DIR="/user/user01/TFmodel" 

stream_tokens = tls.get_credentials_file()['stream_ids']
token_1 = stream_tokens[0]   # I'm getting my stream tokens from the end to ensure I'm not reusing tokens
token_2 = stream_tokens[1]

stream_id1 = dict(token=token_1, maxpoints=60)
stream_id2 = dict(token=token_2, maxpoints=60)

trace1 = go.Scatter(x=[],y=[],mode='lines',
                    line = dict(color = ('rgb(22, 96, 167)'),width = 4),
                    stream=stream_id1, 
                    name='Sensor')

trace2 = go.Scatter(x=[],y=[],mode='markers',
                    stream=stream_id2, 
                    marker=dict(color='rgb(255, 0, 0)',size=10),
                    name = 'Prediction')
github WheatonCS / Lexos / lexos / models / statistics_model.py View on Github external
mode="markers",
            marker=dict(color=self._stats_option.highlight_color),
            text=labels
        )

        # Set up the box plot.
        box_plot = go.Box(
            x0=0,  # Initial position of the box plot
            y=self._active_doc_term_matrix.sum(1).values,
            hoverinfo="y",
            marker=dict(color=self._stats_option.highlight_color),
            jitter=.15
        )

        # Create a figure with two subplots and fill the figure.
        figure = tools.make_subplots(rows=1, cols=2, shared_yaxes=False)
        figure.append_trace(trace=scatter_plot, row=1, col=1)
        figure.append_trace(trace=box_plot, row=1, col=2)

        # Hide useless information on x-axis and set up title.
        figure.layout.update(
            dragmode="pan",
            showlegend=False,
            margin=dict(
                r=0,
                b=30,
                t=10,
                pad=4
            ),
            xaxis=dict(
                showgrid=False,
                zeroline=False,
github neurodata / m2g / ndmg / stats / plotly_helper.py View on Github external
def traces_to_panels(traces, names=[], ylabs=None, xlabs=None):
    r, c, locs = panel_arrangement(len(traces))
    multi = tools.make_subplots(rows=r, cols=c, subplot_titles=names)
    for idx, loc in enumerate(locs):
        if idx < len(traces):
            for component in traces[idx]:
                multi.append_trace(component, *loc)
        else:
            multi = panel_invisible(multi, idx + 1)
    multi.layout["showlegend"] = False
    return multi
github plotly / dash-docs / tutorial / examples / live_updates.py View on Github external
'Altitude': []
    }

    # Collect some data
    for i in range(180):
        time = datetime.datetime.now() - datetime.timedelta(seconds=i*20)
        lon, lat, alt = satellite.get_lonlatalt(
            time
        )
        data['Longitude'].append(lon)
        data['Latitude'].append(lat)
        data['Altitude'].append(alt)
        data['time'].append(time)

    # Create the graph with subplots
    fig = plotly.tools.make_subplots(rows=2, cols=1, vertical_spacing=0.2)
    fig['layout']['margin'] = {
        'l': 30, 'r': 10, 'b': 30, 't': 10
    }
    fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left'}

    fig.append_trace({
        'x': data['time'],
        'y': data['Altitude'],
        'name': 'Altitude',
        'mode': 'lines+markers',
        'type': 'scatter'
    }, 1, 1)
    fig.append_trace({
        'x': data['Longitude'],
        'y': data['Latitude'],
        'text': data['time'],
github MaayanLab / biojupies-plugins / library / analysis_tools / l1000cds2 / l1000cds2.py View on Github external
def plot(l1000cds2_results, plot_counter, nr_drugs=7, height=300):

	# Check if there are results
	if not l1000cds2_results['mimic'] or not l1000cds2_results['reverse']:
		display(Markdown('### No results were found.\n This is likely due to the fact that the gene identifiers were not recognized by L1000CDS<sup>2</sup>. Please note that L1000CDS<sup>2</sup> currently only supports HGNC gene symbols (https://www.genenames.org/). If your dataset uses other gene identifier systems, such as Ensembl IDs or Entrez IDs, consider converting them to HGNC. Automated gene identifier conversion is currently under development.'))
	else:
		# Links
		if l1000cds2_results['signature_label']:
			display(Markdown('\n### {signature_label} signature:'.format(**l1000cds2_results)))
		display(Markdown(' **L1000CDS<sup>2</sup> Links:**'))
		display(Markdown(' *Mimic Signature Query Results*: {url}'.format(**l1000cds2_results['mimic'])))
		display(Markdown(' *Reverse Signature Query Results*: {url}'.format(**l1000cds2_results['reverse'])))

		# Bar charts
		fig = tools.make_subplots(rows=1, cols=2, print_grid=False);
		for i, direction in enumerate(['mimic', 'reverse']):
			drug_counts = l1000cds2_results[direction]['table'].groupby('pert_desc').size().sort_values(ascending=False).iloc[:nr_drugs].iloc[::-1]

			# Get Bar
			bar = go.Bar(
				x=drug_counts.values,
				y=drug_counts.index,
				orientation='h',
				name=direction.title(),
				hovertext=drug_counts.index,
				hoverinfo='text',
				marker={'color': '#FF7F50' if direction=='mimic' else '#9370DB'}
			)
			fig.append_trace(bar, 1, i+1)
			
			# Get text