Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
trace = go.Scatter(
name='Time for molNum = {}'.format(num_molecules),
x=x_list,
y=y1_list,
mode='markers+lines',
marker=dict(
symbol=key_to_symbol[(num_molecules,'wall_time')],
size=10,
),
line=dict(
color='black',
dash='solid',
)
)
data.append(trace)
trace = go.Scatter(
name='RAM for molNum = {}'.format(num_molecules),
x=x_list,
y=y2_list,
yaxis='y2',
mode='markers+lines',
marker=dict(
symbol=key_to_symbol[(num_molecules,'mem')],
size=10,
),
line=dict(
color='black',
dash='longdash',
)
)
print(key_to_symbol[(num_molecules,'mem')],)
data.append(trace)
def _generate_scatter_single_(self, _df, _name):
return go.Scatter(
x = _df.index,
y = _df,
name = _name)
def create_interactive_scatter_plot(embeddings_2d, labels, output=None):
clusters_count = compute_clusters_count(labels)
data = []
for i in range(clusters_count):
indexes = labels[labels.Cluster == i].index.values
label_column = "value" if "value" in labels.columns else "type"
trace = go.Scatter(
x=embeddings_2d[indexes, 0],
y=embeddings_2d[indexes, 1],
mode="markers",
text=labels.loc[indexes][label_column].values,
marker={"color": SVG_COLORS[i]}
)
data.append(trace)
kwargs = {"filename": output} if output else {}
plotly.offline.plot(data, **kwargs)
def plot_piano_roll():
plotly.offline.plot({
"data": [go.Scatter(x=range(len(total_errors_in_evalutaion_order)),
y=total_errors_in_evalutaion_order,
mode = 'markers',
marker = dict(
color = 'rgba(85, 109, 255, .3)')
)],
"layout": go.Layout(xaxis= dict(title = 'Evaluation'),
yaxis = dict(title = 'Total Error',
type='log'))
})
if use_median:
p25.append(np.mean(plt.percentile25))
p50.append(np.mean(plt.percentile50))
p75.append(np.mean(plt.percentile75))
x = list(range(len(plt.percentile50)))
y = list(plt.percentile50)
y_upper = list(plt.percentile75)
y_lower = list(plt.percentile25)
else:
x = list(range(len(plt.means)))
y = list(plt.means)
y_upper = list(plt.means + plt.stds)
y_lower = list(plt.means - plt.stds)
data.append(
go.Scatter(
x=x + x[::-1],
y=y_upper + y_lower[::-1],
fill='tozerox',
fillcolor=core.hex_to_rgb(color, 0.2),
line=go.Line(color='transparent'),
showlegend=False,
legendgroup=plt.legend,
hoverinfo='none'))
data.append(
go.Scatter(
x=x,
y=y,
name=plt.legend,
legendgroup=plt.legend,
line=dict(color=core.hex_to_rgb(color)),
))
color_scale = plotly_color_scale()
plotly.offline.init_notebook_mode()
fig = go.Figure()
data = None
xidx = 0
for obs in args:
if isinstance(obs, types.FunctionType):
if data is None:
raise ValueError("A function must be given after an observer.")
y = [obs(xi) for xi in data[xidx]]
label = obs.__name__
showlegend = (label not in color_scale.get_config())
trace = go.Scatter(x=data[xidx], y=y, name=label, line_color=color_scale.get_color(label), legendgroup=label, showlegend=showlegend)
fig.add_trace(trace)
continue
data = numpy.array(obs.data()).T
targets = [sp.serial() for sp in obs.targets()]
targets = list(enumerate(targets))
for idx, serial in targets:
showlegend = (serial not in color_scale.get_config())
trace = go.Scatter(x=data[xidx], y=data[idx + 1], name=serial, line_shape=('linear' if not step else 'hv'), line_color=color_scale.get_color(serial), legendgroup=serial, showlegend=showlegend)
fig.add_trace(trace)
layout_ = dict(xaxis_title='Time', yaxis_title='The Number of Molecules')
if layout is not None:
layout_.update(layout)
def search_scatter2d(graph_id, ds, key_x, key_y):
return dcc.Graph(
id='arch-1d-over-time',
figure={
'data': [
go.Scatter(
x=range(1, len(ds) + 1),
y=[d['validation_accuracy'] for d in ds],
# text=df[df['continent'] == i]['country'],
mode='markers',
opacity=0.7,
marker={
'size': 15,
'line': {'width': 0.5, 'color': 'white'}
},
),
go.Scatter(
x=range(1, len(ds) + 1),
y=vi.running_max([d['validation_accuracy'] for d in ds]),
# text=df[df['continent'] == i]['country'],
mode='line',
# opacity=0.7,
digitized = np.digitize(time, bins, right=True)
bin_means = [time[digitized == i].mean() for i in range(1, len(bins))]
# Interpolation
length = dataframe_dict.get('sequence.length')
f = interp1d(time, length, kind="linear")
x_int = np.linspace(time[0],time[-1], 150)
y_int = f(x_int)
# Plot of mean values Y axis
length_filt = length.loc[length >= 0].dropna()
fig = go.Figure()
fig.append_trace(go.Scatter(
x=x_int,
y=y_int,
mode='lines',
name='interpolation curve',
line=dict(color='#205b47', width=3, shape="linear"))
)
fig.update_layout(
title={
'text': "<b>Read length over experiment time</b>",
'y':1.0,
'x':0.45,
'xanchor': 'center',
'yanchor': 'top',
'font' : dict(
def plot_changes(df_plot, group):
created_line = go.Scatter(
name='Created',
x=df_plot.index,
y=df_plot['created'])
submitted_line = go.Scatter(
name='Merged',
x=df_plot.index,
y=df_plot['merged'])
updated_line = go.Scatter(
name='Updated',
x=df_plot.index,
y=df_plot['updated'])
plot_title = "Changes/PRs (%s projects)" % group
changes_plot = plotly.offline.plot(
{
"data": [created_line, submitted_line, updated_line],
"layout": go.Layout(title=plot_title)
},
show_link=False,
output_type='div',
include_plotlyjs='False')
return changes_plot
plt.figure(figsize=(10, 5), dpi=100)
plt.stackplot(population.index, population.values.T / 1e9)
plt.legend(population.columns, loc='upper left')
plt.ylabel('Population count (B)')
plt.show()
# ## Stacked bar plot with plotly
# region
import plotly.offline as offline
import plotly.graph_objs as go
offline.init_notebook_mode()
# endregion
data = [go.Scatter(x=population.index, y=population[zone], name=zone, stackgroup='World')
for zone in zones]
fig = go.Figure(data=data,
layout=go.Layout(title='World population'))
offline.iplot(fig)