Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
y=share_token_rates,
name='share token rates',
mode='lines',
yaxis='y2')
layout = go.Layout(
title='Shared tokens rates',
xaxis=dict(title='bias', autorange=True),
yaxis=dict(title='num of tokens', type='log', autorange=True),
yaxis2=dict(
title='accumlative share token rates',
autorange=True,
side='right',
overlaying='y'))
fig = go.Figure(data=[t1, t2], layout=layout)
py.plot(
fig, filename='{}_rate.html'.format(output_prefix), auto_open=False)
def main(samples, completeness_files, taxonomy_files, report_out, bin_table):
sample_data = {}
div = {}
for sample in samples:
sample_data[sample] = {}
for completeness_file in completeness_files:
# underscore version was for simplified local testing
# if "%s_" % sample in completeness_file:
if "%s/" % sample in completeness_file:
sample_data[sample]["completeness"] = completeness_file
for taxonomy_file in taxonomy_files:
# if "%s_" % sample in taxonomy_file:
if "%s/" % sample in taxonomy_file:
sample_data[sample]["taxonomy"] = taxonomy_file
df = parse_checkm_output(sample_data, bin_table)
div["bin_scatter"] = offline.plot(
{
"data": [
{
"x": df[df["Sample"] == sample]["Completeness"],
"y": df[df["Sample"] == sample]["Contamination"],
"name": sample,
"mode": "markers",
"text": df.index[df["Sample"] == sample],
"hoverinfo": "text",
"showlegend": True,
}
for sample in df.Sample.unique()
],
"layout": {
"xaxis": {"title": "Completeness"}, "yaxis": {"title": "Contamination"}
},
layout = go.Layout(
autosize=True,
height=350 + 40 * len(versions),
plot_bgcolor='rgba(249,249,249,1)',
showlegend=False,
title='Execution time for every version',
xaxis=dict(title='Execution time (ms)'),
yaxis=dict(
title='Version',
autorange='reversed'
),
margin=go.Margin(
l=200
)
)
return plotly.offline.plot(go.Figure(data=data, layout=layout), output_type='div', show_link=False)
'airmass': request.GET.get('airmass'),
'target': context['object']
})
if plan_form.is_valid():
start_time = parse(request.GET['start_time'])
end_time = parse(request.GET['end_time'])
if request.GET.get('airmass'):
airmass_limit = float(request.GET.get('airmass'))
else:
airmass_limit = None
visibility_data = get_sidereal_visibility(context['object'], start_time, end_time, 10, airmass_limit)
plot_data = [
go.Scatter(x=data[0], y=data[1], mode='lines', name=site) for site, data in visibility_data.items()
]
layout = go.Layout(yaxis=dict(autorange='reversed'))
visibility_graph = offline.plot(
go.Figure(data=plot_data, layout=layout), output_type='div', show_link=False
)
return {
'form': plan_form,
'target': context['object'],
'visibility_graph': visibility_graph
}
yaxis=dict(
title='loss',
gridcolor='#bdbdbd'
),
yaxis2=dict(
title='bleu',
overlaying='y',
side='right'
)
)
data = [trace0, trace1, trace2, trace3, trace4, trace0min, trace1max, trace2min, trace3max]
# data = [trace2, trace3, trace4, trace2min, trace3max]
fig = go.Figure(data=data, layout=layout)
# Plot and embed in ipython notebook!
plotly.offline.plot(fig, filename=dest, auto_open=False)
total_holding_pnl = sum((i[i.columns[0]] for i in self.holding_pnl_df))
total_holding_pnl = pd.DataFrame(total_holding_pnl)
total_holding_pnl.columns = ['total_holding_pnl']
self.append_trace(fig, total_holding_pnl, 2, 1)
fig['layout']['yaxis'].update(
dict(overlaying='y3', side='right', showgrid=False))
# fig['layout']['xaxis']['type'] = 'category'
# fig['layout']['xaxis']['rangeslider']['visible'] = False
# fig['layout']['xaxis']['tickangle'] = 45
fig['layout']['xaxis']['visible'] = False
fig['layout']['hovermode'] = 'closest'
fig['layout']['xaxis']['rangeslider']['visible'] = False
if notebook:
plotly.offline.init_notebook_mode()
py.iplot(fig, filename='OnePy_plot.html', validate=False)
else:
py.plot(fig, filename='OnePy_plot.html', validate=False)
grad, ex_1, ex_2 = _compute_gradient(g, traj, goal, beta=beta, debug=True)
ex_1s.append(ex_1)
ex_2s.append(ex_2)
score = _compute_score(g, traj, goal, beta=beta)
print "score={}: grad={}".format(score, grad)
import plotly.offline as py
import plotly.graph_objs as go
ex_1s = np.array(ex_1s)
ex_2s = np.array(ex_2s)
diff = (ex_1s - ex_2s)
data = []
data.append(dict(x=betas, y=ex_1s))
data.append(dict(x=betas, y=ex_2s))
data.append(dict(x=betas, y=diff))
py.plot(data, filename="output/grad_debug.html")
elif grid == 'col':
fig = tools.make_subplots(rows=row, cols=column)
for i, itm in enumerate(ptrace):
fig.append_trace(itm, i + 1, column)
# set some configurations
config = {'scrollZoom': True, 'editable': True}
# first lines of additional html with the link to the local javascript
self.raw_plot = '' \
''.format(
self.POLY_FILL_PATH, self.PLOTLY_PATH)
# call the plot method without all the javascript code
self.raw_plot += plotly.offline.plot(fig, output_type='div', include_plotlyjs=False, show_link=False,
config=config)
# insert callback for javascript events
self.raw_plot += self.js_callback(self.raw_plot)
# use regex to replace the string ReplaceTheDiv with the correct plot id generated by plotly
match = re.search(r'Plotly.newPlot\(\s*[\'"](.+?)[\'"]', self.raw_plot)
substr = match.group(1)
self.raw_plot = self.raw_plot.replace('ReplaceTheDiv', substr)
self.plot_path = os.path.join(tempfile.gettempdir(), 'temp_plot_name.html')
with open(self.plot_path, "w") as f:
f.write(self.raw_plot)
return self.plot_path
line=dict(
color="red",
width=2
),
marker=dict(
color="red",
size=4
)
)
layout = dict(title='Adaptive Voter Model',
xaxis=dict(title='time'),
)
fig = dict(data=[data_opinion0, data_opinion1, data_majority_opinion], layout=layout)
py.plot(fig, filename="adaptive-voter-model.html")