Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_user_interventions_count_linechart():
df = load_chat_as_df()
fb = FigureBuilder(df=df)
fig = fb.user_interventions_count_linechart()
assert isinstance(fig, go.Figure)
assert ('data' in fig and 'layout' in fig)
size=5,
symbol='circle',
line=dict(
color='rgb(204, 204, 204)',
width=1
),
opacity=0.9
),
text = text,
)
data.append(trace)
if annoLen < 35:
layout = go.Layout(legend=dict(orientation="v"),autosize=True,showlegend=True)
else:
layout = go.Layout(legend=dict(orientation="v"),autosize=True,showlegend=False)
fig = go.Figure(data=data, layout=layout)
fn = os.path.join(savefolder, '%s_%s_%s.html' % (annText, kind.replace(' ', '_'), visMethod))
print('##########saving plot: %s' % fn)
plotly.offline.plot(fig, filename=fn)
if data is None:
data = [s]
else:
data.append(s)
directory = analyticConfig.output_dir
try:
os.makedirs(directory, mode=0755)
except OSError, e:
# be happy if someone already created the path
pass
baseFilename = getFilename(timelyMetric.metric, analyticConfig)
filename = directory+'/'+baseFilename
fig = go.Figure(data=data, layout=layout)
if notebook:
py.iplot(fig, filename=filename, show_link=False)
return None
else:
py.plot(fig, output_type='file', filename=filename+'.html', image_filename=filename, image=None, auto_open=False, show_link=False)
return baseFilename+'.html'
color='#7f7f7f'
)
),
yaxis=dict(
type='linear',
autorange=True,
title='Load Resistance [ohm]',
titlefont=dict(
family='Courier New, monospace',
size=18,
color='#7f7f7f'
)
)
)
fig = plotly.graph_objs.Figure(data=data_r_loads, layout=layout_r_loads)
plotly.offline.plot(fig, filename = 'load_resistance.html')
# In[15]:
# v_gate
plot_v_gate = True
if plot_v_gate:
aux_x = np.linspace(0, 2*v_set, 200)
a=100
aux_y = 1/(1+np.exp(a*(aux_x-v_set)))
data_v_gate = [
plotly.graph_objs.Scatter(
x=aux_x,
shapes=[dict(
type='line',
x0=0.05,
x1=0.05,
y0=-1,
y1=len(covnames),
line=dict(
color='gray',
dash='dot'
),
)],
width=800,
height=600,
hovermode='closest'
)
fig = go.Figure(data=data, layout=layout)
if notebook:
plotly.offline.iplot(fig, filename=filename, show_link=False, **kwargs)
else:
plotly.offline.plot(fig, filename=filename, show_link=False, **kwargs)
in the figure, if available.
figsize: The plot's size (in px).
Returns
-------
A Plotly Figure.
"""
props = get_forecast_component_plotly_props(m, fcst, name, uncertainty, plot_cap)
layout = go.Layout(
width=figsize[0],
height=figsize[1],
showlegend=False,
xaxis=props['xaxis'],
yaxis=props['yaxis']
)
fig = go.Figure(data=props['traces'], layout=layout)
return fig
if ice_result.labels[i] in clusters:
ice_points_tmp.append(i)
_ice_plotly(ice_result, ice_points=ice_points_tmp,
ice_results_2=ice_results_2, height=height, width=width)
# plot ice curves
for i in ice_points:
data.append(go.Scatter(
x=ice_result.x_values, y=ice_result.ice[i, :], name=ice_result.data_name + '[' + str(ice_result.start_index + i) + ',:]'))
layout = go.Layout(
title=title,
xaxis=dict(title=x_coord_name),
yaxis=dict(title=y_coord_name),
height=height,
width=width
)
fig = go.Figure(data=data, layout=layout)
if use_within_widget:
return fig
iplot(fig) # , filename='pandas/basic-line-plot')
def graph(self):
stream_randomizer = Scatter(
x=[],
y=[],
stream=dict(
token=self.streamtoken,
)
)
layout = Layout(
title="IoTPy Randomizer"
)
this = Figure(data=[stream_randomizer], layout=layout)
py.plot(this, filename='IotPy Randomizer', auto_open=False)
stream = py.Stream(self.streamtoken)
stream.open()
time.sleep(5)
counter = 0
while True:
randomizerdata = randint(0,100)
stream.write({'x': counter, 'y': randomizerdata})
counter += 1
time.sleep(0.25)
if pd_is_not_null(security_factor.data_df):
print(security_factor.data_df.tail())
# generate the annotation df
order_reader.move_on(timeout=0)
df = order_reader.data_df.copy()
if pd_is_not_null(df):
df['value'] = df['order_price']
df['flag'] = df['order_type'].apply(lambda x: order_type_flag(x))
df['color'] = df['order_type'].apply(lambda x: order_type_color(x))
print(df.tail())
data, layout = security_factor.draw(render=None, figures=go.Candlestick, annotation_df=df)
return go.Figure(data=data, layout=layout)
for app, tasks in apps_dict.items():
tmp = []
if option == 'avg':
task = df_resources[df_resources['task_id'] == app]['psutil_process_memory_resident'].astype('float').mean()
elif option == 'max':
task = max(df_resources[df_resources['task_id'] == app]['psutil_process_memory_resident'].astype('float'))
for i in range(len(x_axis) - 1):
a = task >= x_axis[i]
b = task < x_axis[i + 1]
tmp.append(a & b)
items = np.sum([items, tmp], axis=0)
return items
return go.Figure(
data=[go.Bar(x=[num / 1000000000 for num in x_axis[:-1]],
y=y_axis_setup(),
name='tasks')],
layout=go.Layout(xaxis=dict(autorange=True,
title='Usage (GB)'),
yaxis=dict(title='Tasks'),
title='Resident Memory Distribution'))