Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
sig = signals
lastSignals = signals
else:
sig = lastSignals
for signal in sig:
if signal[2] in selection:
if signal[3] not in sorted.keys():
sorted[signal[3]] = []
sorted[signal[3]].append(signal[0:3])
# Create the graph with subplots
if len(sorted) == 0:
greater1 = 1
else:
greater1 = len(sorted)
# subplot_titles=tuple(sorted.keys()))
fig = plotly.tools.make_subplots(rows=greater1, cols=1, vertical_spacing=0.2,)
fig['layout']['margin'] = {
'l': 30, 'r': 10, 'b': 30, 't': 10
}
fig['layout']['legend'] = {'x': 0, 'y': 1, 'xanchor': 'left'}
# print(sorted)
for idx, unit in enumerate(sorted.keys()):
#fig['layout']['xaxis'+str(idx+1)]['tickformat'] = '%H:%M:%S %d.%m.%Y'
for signal in sorted[unit]:
fig.append_trace({
'x': signal[0],
'y': signal[1],
'name': signal[2]+' ['+unit+']',
'mode': 'lines+markers',
'type': 'scatter'
}, idx+1, 1)
):
"""
plot_lists is a list of lists.
Each outer list represents different y-axis attributes.
Each inner list represents different experiments to run, within that y-axis
attribute.
Each plot is an AttrDict which should have the elements used below.
"""
x_axis = [(subplot['plot_key'], subplot['means']) for plot_list in plot_lists for subplot in plot_list if subplot['x_key']]
plot_lists = [[subplot for subplot in plot_list] for plot_list in plot_lists if not plot_list[0]['x_key']]
xlabel = x_axis[0][0] if len(x_axis) else 'iteration'
p25, p50, p75 = [], [], []
num_y_axes = len(plot_lists)
fig = tools.make_subplots(rows=num_y_axes, cols=1, print_grid=False)
fig['layout'].update(
width=plot_width,
height=plot_height,
title=title,
)
for y_idx, plot_list in enumerate(plot_lists):
for idx, plt in enumerate(plot_list):
color = core.color_defaults[idx % len(core.color_defaults)]
if use_median:
p25.append(np.mean(plt.percentile25))
p50.append(np.mean(plt.percentile50))
p75.append(np.mean(plt.percentile75))
if x_axis:
x = list(x_axis[idx][1])
else:
def plot_experiment(experiment_spec, experiment_df, metrics_cols):
'''
Plot the metrics vs. specs parameters of an experiment, where each point is a trial.
ref colors: https://plot.ly/python/heatmaps-contours-and-2dhistograms-tutorial/#plotlys-predefined-color-scales
'''
y_cols = metrics_cols
x_cols = ps.difference(experiment_df.columns.tolist(), y_cols + ['trial'])
fig = tools.make_subplots(rows=len(y_cols), cols=len(x_cols), shared_xaxes=True, shared_yaxes=True, print_grid=False)
strength_sr = experiment_df['strength']
min_strength, max_strength = strength_sr.min(), strength_sr.max()
for row_idx, y in enumerate(y_cols):
for col_idx, x in enumerate(x_cols):
x_sr = experiment_df[x]
guard_cat_x = x_sr.astype(str) if x_sr.dtype == 'object' else x_sr
trace = go.Scatter(
y=experiment_df[y], yaxis=f'y{row_idx+1}',
x=guard_cat_x, xaxis=f'x{col_idx+1}',
showlegend=False, mode='markers',
marker={
'symbol': 'circle-open-dot', 'color': strength_sr, 'opacity': 0.5,
# dump first portion of colorscale that is too bright
'cmin': min_strength - 0.5 * (max_strength - min_strength), 'cmax': max_strength,
'colorscale': 'YlGnBu', 'reversescale': True
},
return occupancies.reshape(g.rows, g.cols)
for i in xrange(len(trajectory)):
if i == 0:
traj = [(start, Actions.ABSORB)]
else:
traj = trajectory[:i]
fixed_occupancies = format_occ(infer_occupancies(g, traj, beta=beta_fixed,
dest_set=set([model_goal])))
data1 = output_heat_map(g, fixed_occupancies, traj, start,
dest_set=set([model_goal]),
auto_logarithm=auto_log,
zmin=zmin, zmax=zmax)
fig = tools.make_subplots(rows=1, cols=1,
subplot_titles=(
"beta={} (Ziebart beta)".format(beta_fixed),))
fig['layout'].update(
title=("Correct Goal, movement reward={R}, " +
"{min_beta}<beta<{max_beta}<br>t={t}").format(
t=i, R=R, min_beta=min_beta, max_beta=max_beta))
for t in data1:
fig.append_trace(t, 1, 1)
# py.plot(fig, filename=u"output/{}.html".format(100+i))
py.plot(fig, filename=u"output/{}.html".format(100+i),
image=u'png', image_filename=u"output/{}.png".format(100+i),
image_width=1400, image_height=750)
def figure(self, rows=1, cols=1, specs=None, is_3d=False, **kwargs):
if specs is None:
specs = [[{'is_3d': is_3d}]*cols]*rows
figure = tools.make_subplots(rows, cols, specs=specs, **kwargs)
return figure
def plot_config_performances_for_outer_fold(self, outer_cv_fold=0, output_filename=''):
if not output_filename:
output_filename = 'PHOTON_Results_' + self.name + '_' + datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
tested_configs = self.get_tested_configurations_for(outer_cv_fold=outer_cv_fold)
tracelist = []
col_nr = 4
row_nr = int(np.ceil(len(tested_configs) / col_nr))
fig = tools.make_subplots(row_nr, col_nr, shared_xaxes=True, shared_yaxes=True,
subplot_titles=[item.pretty_config_dict() for item in tested_configs])
col_cnt = 1
row_cnt = 1
for cfg in tested_configs:
inner_fold_list = cfg.fold_list
cnt = 0
metric_list = []
name_list = []
text_list = []
for fold in inner_fold_list:
for metric_name, metric_value in fold.train.metrics.items():
metric_list.append(metric_value)
name_list.append(metric_name)
text_list.append('inner fold ' + str(cnt + 1))
from pyAudioAnalysis import ShortTermFeatures as aF
from pyAudioAnalysis import audioBasicIO as aIO
if __name__ == '__main__':
win = 0.05
fp1 = "../data/general/speech/m1_neu-m1-l1.wav.wav" # male
fp2 = "../data/general/speech/f1_neu-f1-l2.wav.wav" # female
# read machine sound
fs1, s1 = aIO.read_audio_file(fp1)
fs2, s2 = aIO.read_audio_file(fp2)
dur1, dur2 = len(s1) / float(fs1), len(s2) / float(fs2)
# extract short term features
[f1, fn] = aF.feature_extraction(s1, fs1, int(fs1 * win), int(fs1 * win))
[f2, fn] = aF.feature_extraction(s2, fs2, int(fs2 * win), int(fs2 * win))
figs = plotly.tools.make_subplots(rows=1, cols=2,
subplot_titles=[fn[9], fn[10]])
t1 = np.arange(0, dur1 - 0.050, 0.050)
t2 = np.arange(0, dur2 - 0.050, 0.050)
figs.append_trace(go.Scatter(x=t1, y=f1[9, :], name="male"), 1, 1)
figs.append_trace(go.Scatter(x=t2, y=f2[9, :], name="female"), 1, 1)
figs.append_trace(go.Scatter(x=t1, y=f1[10, :], name="male"), 1, 2)
figs.append_trace(go.Scatter(x=t2, y=f2[10, :], name="female"), 1, 2)
plotly.offline.plot(figs, filename="temp.html", auto_open=True)
def save(self, filename=None, xLimits=None):
"""
Saves all plots and their data points that have been added to the
plotFactory.
Args:
filename (str): Name for the output file. Default = "spectrum_plot.html"
mz_range (tuple): m/z range which should be considered [start, end].
Default = None
"""
plot_number = len(self.plots)
rows, cols = int(math.ceil(plot_number / float(2))), 2
if plot_number % 2 == 0:
my_figure = tools.make_subplots(
rows=rows, cols=cols, vertical_spacing=0.6 / rows
)
else:
specs = [[{}, {}] for x in range(rows - 1)]
specs.append([{'colspan': 2}, None])
my_figure = tools.make_subplots(
rows=rows,
cols=cols,
vertical_spacing=0.6 / rows,
specs=specs,
subplot_titles=self.titles
)
for i, plot in enumerate(self.plots):
for j, trace in enumerate(plot):
my_figure.append_trace(
o1 = infer_occupancies(g, traj, beta=beta1,
dest_set={goal}).reshape(g.rows, g.cols)
data1 = output_heat_map(g, o1, traj, start, {goal}, beta_hat=beta1, zmin=-10)
o2 = infer_occupancies(g, traj, beta=beta2,
dest_set={goal}).reshape(g.rows, g.cols)
data2 = output_heat_map(g, o2, traj, start, {goal}, beta_hat=beta2, zmin=-10)
o_diff = np.abs(o1 - o2)
data3 = output_heat_map(g, o_diff, traj, start, {goal}, beta_hat=beta1, zmin=-10)
import plotly.offline as py
import plotly.graph_objs as go
from plotly import offline
from plotly import tools as tools
fig = tools.make_subplots(rows=1, cols=3,
subplot_titles=(
"expected occupancies, beta={}".format(beta1),
"expected occupancies, beta={}".format(beta2),
"abs difference in ex. occupancies"))
fig['layout'].update(title=title)
for t in data1:
fig.append_trace(t, 1, 1)
for t in data2:
fig.append_trace(t, 1, 2)
for t in data3:
fig.append_trace(t, 1, 3)
# py.plot(fig, filename="output/beta_versus.html")
py.plot(fig, filename="output/beta_versus_{}.html".format(100+uid),
image='png', image_filename="output/beta_versus_{}.png".format(100+uid),
image_width=1400, image_height=750)