Midburn/Spark
Ready to fix your vulnerabilities? Automatically find, fix, and monitor vulnerabilities for free with Snyk.
Find, fix and prevent vulnerabilities in your code.
critical severity
- Vulnerable module: constantinople
- Introduced through: jade@1.11.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › jade@1.11.0 › constantinople@3.0.2
Overview
constantinople is a Determine whether a JavaScript expression evaluates to a constant (using acorn)
Affected versions of this package are vulnerable to Sandbox Bypass which can lead to arbitrary code execution.
Remediation
Upgrade constantinople
to version 3.1.1 or higher.
References
critical severity
- Vulnerable module: knex
- Introduced through: knex@0.14.6
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › knex@0.14.6Remediation: Upgrade to knex@0.19.5.
Overview
knex is a query builder for PostgreSQL, MySQL and SQLite3
Affected versions of this package are vulnerable to SQL Injection. None
Remediation
Upgrade knex
to version 0.19.5 or higher.
References
critical severity
- Vulnerable module: babel-traverse
- Introduced through: babel-core@6.26.3 and babel-register@6.26.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-traverse@6.26.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0
…and 6 more
Overview
Affected versions of this package are vulnerable to Incomplete List of Disallowed Inputs when using plugins that rely on the path.evaluate()
or path.evaluateTruthy()
internal Babel methods.
Note:
This is only exploitable if the attacker uses known affected plugins such as @babel/plugin-transform-runtime
, @babel/preset-env
when using its useBuiltIns
option, and any "polyfill provider" plugin that depends on @babel/helper-define-polyfill-provider
. No other plugins under the @babel/
namespace are impacted, but third-party plugins might be.
Users that only compile trusted code are not impacted.
Workaround
Users who are unable to upgrade the library can upgrade the affected plugins instead, to avoid triggering the vulnerable code path in affected @babel/traverse
.
Remediation
There is no fixed version for babel-traverse
.
References
critical severity
- Vulnerable module: elliptic
- Introduced through: webpack@2.7.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › node-libs-browser@2.2.1 › crypto-browserify@3.12.1 › browserify-sign@4.2.3 › elliptic@6.6.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › node-libs-browser@2.2.1 › crypto-browserify@3.12.1 › create-ecdh@4.0.4 › elliptic@6.6.1
Overview
elliptic is a fast elliptic-curve cryptography implementation in plain javascript.
Affected versions of this package are vulnerable to Improper Verification of Cryptographic Signature due to an anomaly in the _truncateToN
function. An attacker can cause legitimate transactions or communications to be incorrectly flagged as invalid by exploiting the signature verification process when the hash contains at least four leading 0 bytes, and the order of the elliptic curve's base point is smaller than the hash.
In some situations, a private key exposure is possible. This can happen when an attacker knows a faulty and the corresponding correct signature for the same message.
PoC
var elliptic = require('elliptic'); // tested with version 6.5.7
var hash = require('hash.js');
var BN = require('bn.js');
var toArray = elliptic.utils.toArray;
var ec = new elliptic.ec('p192');
var msg = '343236343739373234';
var sig = '303502186f20676c0d04fc40ea55d5702f798355787363a91e97a7e50219009d1c8c171b2b02e7d791c204c17cea4cf556a2034288885b';
// Same public key just in different formats
var pk = '04cd35a0b18eeb8fcd87ff019780012828745f046e785deba28150de1be6cb4376523006beff30ff09b4049125ced29723';
var pkPem = '-----BEGIN PUBLIC KEY-----\nMEkwEwYHKoZIzj0CAQYIKoZIzj0DAQEDMgAEzTWgsY7rj82H/wGXgAEoKHRfBG54\nXeuigVDeG+bLQ3ZSMAa+/zD/CbQEkSXO0pcj\n-----END PUBLIC KEY-----\n';
// Create hash
var hashArray = hash.sha256().update(toArray(msg, 'hex')).digest();
// Convert array to string (just for showcase of the leading zeros)
var hashStr = Array.from(hashArray, function(byte) {
return ('0' + (byte & 0xFF).toString(16)).slice(-2);
}).join('');
var hMsg = new BN(hashArray, 'hex');
// Hashed message contains 4 leading zeros bytes
console.log('sha256 hash(str): ' + hashStr);
// Due to using BN bitLength lib it does not calculate the bit length correctly (should be 32 since it is a sha256 hash)
console.log('Byte len of sha256 hash: ' + hMsg.byteLength());
console.log('sha256 hash(BN): ' + hMsg.toString(16));
// Due to the shift of the message to be within the order of the curve the delta computation is invalid
var pubKey = ec.keyFromPublic(toArray(pk, 'hex'));
console.log('Valid signature: ' + pubKey.verify(hashStr, sig));
// You can check that this hash should validate by consolidating openssl
const fs = require('fs');
fs.writeFile('msg.bin', new BN(msg, 16).toBuffer(), (err) => {
if (err) throw err;
});
fs.writeFile('sig.bin', new BN(sig, 16).toBuffer(), (err) => {
if (err) throw err;
});
fs.writeFile('cert.pem', pkPem, (err) => {
if (err) throw err;
});
// To verify the correctness of the message signature and key one can run:
// openssl dgst -sha256 -verify cert.pem -signature sig.bin msg.bin
// Or run this python script
/*
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ec
msg = '343236343739373234'
sig = '303502186f20676c0d04fc40ea55d5702f798355787363a91e97a7e50219009d1c8c171b2b02e7d791c204c17cea4cf556a2034288885b'
pk = '04cd35a0b18eeb8fcd87ff019780012828745f046e785deba28150de1be6cb4376523006beff30ff09b4049125ced29723'
p192 = ec.SECP192R1()
pk = ec.EllipticCurvePublicKey.from_encoded_point(p192, bytes.fromhex(pk))
pk.verify(bytes.fromhex(sig), bytes.fromhex(msg), ec.ECDSA(hashes.SHA256()))
*/
Remediation
There is no fixed version for elliptic
.
References
high severity
- Vulnerable module: node-sass
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to NULL Pointer Dereference in the function Sass::Functions::selector_append
which could be leveraged by an attacker to cause a denial of service (application crash) or possibly have unspecified other impact. node-sass
is affected by this vulnerability due to its bundled usage of libsass
.
Remediation
There is no fixed version for node-sass
.
References
high severity
- Vulnerable module: node-sass
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Use After Free via the SharedPtr
class in SharedPtr.cpp
(or SharedPtr.hpp
) that may cause a denial of service (application crash) or possibly have unspecified other impact. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
There is no fixed version for node-sass
.
References
high severity
- Vulnerable module: cross-spawn
- Introduced through: node-sass@4.14.1 and nodemon@1.19.4
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › cross-spawn@3.0.1Remediation: Upgrade to node-sass@5.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › update-notifier@2.5.0 › boxen@1.3.0 › term-size@1.2.0 › execa@0.7.0 › cross-spawn@5.1.0Remediation: Upgrade to nodemon@2.0.3.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string.
PoC
const { argument } = require('cross-spawn/lib/util/escape');
var str = "";
for (var i = 0; i < 1000000; i++) {
str += "\\";
}
str += "◎";
console.log("start")
argument(str)
console.log("end")
// run `npm install cross-spawn` and `node attack.js`
// then the program will stuck forever with high CPU usage
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade cross-spawn
to version 6.0.6, 7.0.5 or higher.
References
high severity
- Vulnerable module: knex
- Introduced through: connect-session-knex@1.7.3 and knex@0.14.6
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › connect-session-knex@1.7.3 › knex@0.21.21Remediation: Upgrade to connect-session-knex@3.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › knex@0.14.6Remediation: Upgrade to knex@2.4.0.
Overview
knex is a query builder for PostgreSQL, MySQL and SQLite3
Affected versions of this package are vulnerable to SQL Injection due to missing escape of field objects, which allows ignoring the WHERE
clause of a SQL
query.
Note:
Exploiting this vulnerability is possible when using MySQL
DB.
PoC
const knex = require('knex')({
client: 'mysql2',
connection: {
host: '127.0.0.1',
user: 'root',
password: 'supersecurepassword',
database: 'poc',
charset: 'utf8'
}
})
knex.schema.hasTable('users').then((exists) => {
if (!exists) {
knex.schema.createTable('users', (table) => {
table.increments('id').primary()
table.string('name').notNullable()
table.string('secret').notNullable()
}).then()
knex('users').insert({
name: "admin",
secret: "you should not be able to return this!"
}).then()
knex('users').insert({
name: "guest",
secret: "hello world"
}).then()
}
})
attackerControlled = {
"name": "admin"
}
knex('users')
.select()
.where({secret: attackerControlled})
.then((userSecret) => console.log(userSecret))
Remediation
Upgrade knex
to version 2.4.0 or higher.
References
high severity
- Vulnerable module: nodemailer
- Introduced through: express-mailer@0.3.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-mailer@0.3.1 › nodemailer@0.7.1
Overview
nodemailer is an Easy as cake e-mail sending from your Node.js applications
Affected versions of this package are vulnerable to Command Injection. Use of crafted recipient email addresses may result in arbitrary command flag injection in sendmail transport for sending mails.
PoC
-bi@example.com (-bi Initialize the alias database.)
-d0.1a@example.com (The option -d0.1 prints the version of sendmail and the options it was compiled with.)
-Dfilename@example.com (Debug output ffile)
Remediation
Upgrade nodemailer
to version 6.4.16 or higher.
References
high severity
- Vulnerable module: tar
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › tar@2.2.2Remediation: Upgrade to node-sass@5.0.0.
Overview
tar is a full-featured Tar for Node.js.
Affected versions of this package are vulnerable to Arbitrary File Write. node-tar
aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.
This logic was insufficient when extracting tar
files that contained both a directory and a symlink with the same name as the directory, where the symlink and directory names in the archive entry used backslashes as a path separator on posix systems. The cache checking logic used both \
and /
characters as path separators. However, \
is a valid filename character on posix systems.
By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar
symlink checks on directories, essentially allowing an untrusted tar
file to symlink into an arbitrary location. This can lead to extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite.
Additionally, a similar confusion could arise on case-insensitive filesystems. If a tar
archive contained a directory at FOO
, followed by a symbolic link named foo
, then on case-insensitive file systems, the creation of the symbolic link would remove the directory from the filesystem, but not from the internal directory cache, as it would not be treated as a cache hit. A subsequent file entry within the FOO
directory would then be placed in the target of the symbolic link, thinking that the directory had already been created.
Remediation
Upgrade tar
to version 6.1.7, 5.0.8, 4.4.16 or higher.
References
high severity
- Vulnerable module: tar
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › tar@2.2.2Remediation: Upgrade to node-sass@5.0.0.
Overview
tar is a full-featured Tar for Node.js.
Affected versions of this package are vulnerable to Arbitrary File Write. node-tar
aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.
This logic is insufficient when extracting tar
files that contain two directories and a symlink with names containing unicode values that normalized to the same value. Additionally, on Windows systems, long path portions would resolve to the same file system entities as their 8.3 "short path" counterparts.
A specially crafted tar
archive can include directories with two forms of the path that resolve to the same file system entity, followed by a symbolic link with a name in the first form, lastly followed by a file using the second form. This leads to bypassing node-tar
symlink checks on directories, essentially allowing an untrusted tar
file to symlink into an arbitrary location and extracting arbitrary files into that location.
Remediation
Upgrade tar
to version 6.1.9, 5.0.10, 4.4.18 or higher.
References
high severity
- Vulnerable module: tar
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › tar@2.2.2Remediation: Upgrade to node-sass@5.0.0.
Overview
tar is a full-featured Tar for Node.js.
Affected versions of this package are vulnerable to Arbitrary File Write. node-tar
aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain ..
path portions, and resolving the sanitized paths against the extraction target directory.
This logic is insufficient on Windows systems when extracting tar
files that contain a path that is not an absolute path, but specify a drive letter different from the extraction target, such as C:some\path
. If the drive letter does not match the extraction target, for example D:\extraction\dir
, then the result of path.resolve(extractionDirectory, entryPath)
resolves against the current working directory on the C:
drive, rather than the extraction target directory.
Additionally, a ..
portion of the path can occur immediately after the drive letter, such as C:../foo
, and is not properly sanitized by the logic that checks for ..
within the normalized and split portions of the path.
Note: This only affects users of node-tar
on Windows systems.
Remediation
Upgrade tar
to version 6.1.9, 5.0.10, 4.4.18 or higher.
References
high severity
patched
- Vulnerable module: uglify-js
- Introduced through: jade@1.11.0
Vulnerability patched for: jade transformers uglify-js
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › jade@1.11.0 › transformers@2.1.0 › uglify-js@2.2.5Remediation: Open PR to patch uglify-js@2.2.5.
Overview
uglify-js
is a JavaScript parser, minifier, compressor and beautifier toolkit.
Tom MacWright discovered that UglifyJS versions 2.4.23 and earlier are affected by a vulnerability which allows a specially crafted Javascript file to have altered functionality after minification. This bug was demonstrated by Yan to allow potentially malicious code to be hidden within secure code, activated by minification.
Details
In Boolean algebra, DeMorgan's laws describe the relationships between conjunctions (&&
), disjunctions (||
) and negations (!
).
In Javascript form, they state that:
!(a && b) === (!a) || (!b)
!(a || b) === (!a) && (!b)
The law does not hold true when one of the values is not a boolean however.
Vulnerable versions of UglifyJS do not account for this restriction, and erroneously apply the laws to a statement if it can be reduced in length by it.
Consider this authentication function:
function isTokenValid(user) {
var timeLeft =
!!config && // config object exists
!!user.token && // user object has a token
!user.token.invalidated && // token is not explicitly invalidated
!config.uninitialized && // config is initialized
!config.ignoreTimestamps && // don't ignore timestamps
getTimeLeft(user.token.expiry); // > 0 if expiration is in the future
// The token must not be expired
return timeLeft > 0;
}
function getTimeLeft(expiry) {
return expiry - getSystemTime();
}
When minified with a vulnerable version of UglifyJS, it will produce the following insecure output, where a token will never expire:
( Formatted for readability )
function isTokenValid(user) {
var timeLeft = !( // negation
!config // config object does not exist
|| !user.token // user object does not have a token
|| user.token.invalidated // token is explicitly invalidated
|| config.uninitialized // config isn't initialized
|| config.ignoreTimestamps // ignore timestamps
|| !getTimeLeft(user.token.expiry) // > 0 if expiration is in the future
);
return timeLeft > 0
}
function getTimeLeft(expiry) {
return expiry - getSystemTime()
}
Remediation
Upgrade UglifyJS to version 2.4.24
or higher.
References
high severity
- Vulnerable module: body-parser
- Introduced through: body-parser@1.18.3 and express@4.16.4
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › body-parser@1.18.3Remediation: Upgrade to body-parser@1.20.3.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express@4.16.4 › body-parser@1.18.3Remediation: Upgrade to express@4.20.0.
Overview
Affected versions of this package are vulnerable to Asymmetric Resource Consumption (Amplification) via the extendedparser
and urlencoded
functions when the URL encoding process is enabled. An attacker can flood the server with a large number of specially crafted requests.
Remediation
Upgrade body-parser
to version 1.20.3 or higher.
References
high severity
- Vulnerable module: tar
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › tar@2.2.2Remediation: Upgrade to node-sass@5.0.0.
Overview
tar is a full-featured Tar for Node.js.
Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient symlink protection.
node-tar
aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat
calls to determine whether a given path is a directory, paths are cached when directories are created.
This logic is insufficient when extracting tar files that contain both a directory and a symlink with the same name as the directory. This order of operations results in the directory being created and added to the node-tar
directory cache. When a directory is present in the directory cache, subsequent calls to mkdir
for that directory are skipped.
However, this is also where node-tar
checks for symlinks occur. By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar
symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location.
Remediation
Upgrade tar
to version 3.2.3, 4.4.15, 5.0.7, 6.1.2 or higher.
References
high severity
- Vulnerable module: tar
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › tar@2.2.2Remediation: Upgrade to node-sass@5.0.0.
Overview
tar is a full-featured Tar for Node.js.
Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient absolute path sanitization.
node-tar
aims to prevent extraction of absolute file paths by turning absolute paths into relative paths when the preservePaths
flag is not set to true
. This is achieved by stripping the absolute path root from any absolute file paths contained in a tar file. For example, the path /home/user/.bashrc
would turn into home/user/.bashrc
.
This logic is insufficient when file paths contain repeated path roots such as ////home/user/.bashrc
. node-tar
only strips a single path root from such paths. When given an absolute file path with repeating path roots, the resulting path (e.g. ///home/user/.bashrc
) still resolves to an absolute path.
Remediation
Upgrade tar
to version 3.2.2, 4.4.14, 5.0.6, 6.1.1 or higher.
References
high severity
- Vulnerable module: ajv
- Introduced through: webpack@2.7.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › ajv@4.11.8Remediation: Upgrade to webpack@3.11.0.
Overview
ajv is an Another JSON Schema Validator
Affected versions of this package are vulnerable to Prototype Pollution. A carefully crafted JSON schema could be provided that allows execution of other code by prototype pollution. (While untrusted schemas are recommended against, the worst case of an untrusted schema should be a denial of service, not execution of code.)
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade ajv
to version 6.12.3 or higher.
References
high severity
- Vulnerable module: js-yaml
- Introduced through: i18next-node-fs-backend@1.2.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › i18next-node-fs-backend@1.2.1 › js-yaml@3.5.4Remediation: Upgrade to i18next-node-fs-backend@2.1.3.
Overview
js-yaml is a human-friendly data serialization language.
Affected versions of this package are vulnerable to Arbitrary Code Execution. When an object with an executable toString()
property used as a map key, it will execute that function. This happens only for load()
, which should not be used with untrusted data anyway. safeLoad()
is not affected because it can't parse functions.
Remediation
Upgrade js-yaml
to version 3.13.1 or higher.
References
high severity
- Vulnerable module: ansi-regex
- Introduced through: bookshelf@0.10.4, node-sass@4.14.1 and others
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › bookshelf@0.10.4 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1Remediation: Upgrade to bookshelf@0.14.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › bookshelf@0.10.4 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to bookshelf@0.14.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › inline-source-map-comment@1.0.5 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › inline-source-map-comment@1.0.5 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › yargs@6.6.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to webpack@3.4.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › npmlog@4.1.2 › gauge@2.7.4 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to node-sass@7.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › yargs@6.6.0 › cliui@3.2.0 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to webpack@4.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › inline-source-map-comment@1.0.5 › sum-up@1.0.3 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › inline-source-map-comment@1.0.5 › sum-up@1.0.3 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › npmlog@4.1.2 › gauge@2.7.4 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to node-sass@7.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › yargs@6.6.0 › cliui@3.2.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to webpack@4.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › npmlog@4.1.2 › gauge@2.7.4 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to node-sass@7.0.1.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › yargs@6.6.0 › cliui@3.2.0 › wrap-ansi@2.1.0 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to webpack@4.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › npmlog@4.1.2 › gauge@2.7.4 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to node-sass@7.0.1.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › yargs@6.6.0 › cliui@3.2.0 › wrap-ansi@2.1.0 › string-width@1.0.2 › strip-ansi@3.0.1 › ansi-regex@2.1.1Remediation: Upgrade to webpack@4.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › has-ansi@2.0.0 › ansi-regex@2.1.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › babel-helpers@6.24.1 › babel-template@6.26.0 › babel-traverse@6.26.0 › babel-code-frame@6.26.0 › chalk@1.1.3 › strip-ansi@3.0.1 › ansi-regex@2.1.1
…and 38 more
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the sub-patterns [[\\]()#;?]*
and (?:;[-a-zA-Z\\d\\/#&.:=?%@~_]*)*
.
PoC
import ansiRegex from 'ansi-regex';
for(var i = 1; i <= 50000; i++) {
var time = Date.now();
var attack_str = "\u001B["+";".repeat(i*10000);
ansiRegex().test(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ansi-regex
to version 3.0.1, 4.1.1, 5.0.1, 6.0.1 or higher.
References
high severity
- Vulnerable module: braces
- Introduced through: express-compile-sass@4.0.0, nodemon@1.19.4 and others
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › braces@2.3.2
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › braces@2.3.2Remediation: Upgrade to nodemon@2.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › knex@0.14.6 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › braces@2.3.2Remediation: Upgrade to knex@0.95.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › braces@2.3.2
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › connect-session-knex@1.7.3 › knex@0.21.21 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › braces@2.3.2
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2
…and 8 more
Overview
braces is a Bash-like brace expansion, implemented in JavaScript.
Affected versions of this package are vulnerable to Excessive Platform Resource Consumption within a Loop due improper limitation of the number of characters it can handle, through the parse
function. An attacker can cause the application to allocate excessive memory and potentially crash by sending imbalanced braces as input.
PoC
const { braces } = require('micromatch');
console.log("Executing payloads...");
const maxRepeats = 10;
for (let repeats = 1; repeats <= maxRepeats; repeats += 1) {
const payload = '{'.repeat(repeats*90000);
console.log(`Testing with ${repeats} repeats...`);
const startTime = Date.now();
braces(payload);
const endTime = Date.now();
const executionTime = endTime - startTime;
console.log(`Regex executed in ${executionTime / 1000}s.\n`);
}
Remediation
Upgrade braces
to version 3.0.3 or higher.
References
high severity
- Vulnerable module: dicer
- Introduced through: express-fileupload@0.3.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-fileupload@0.3.0 › busboy@0.2.14 › dicer@0.2.5
Overview
Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious attacker can send a modified form to server, and crash the nodejs service. An attacker could sent the payload again and again so that the service continuously crashes.
PoC
await fetch('http://127.0.0.1:8000', { method: 'POST', headers: { ['content-type']: 'multipart/form-data; boundary=----WebKitFormBoundaryoo6vortfDzBsDiro', ['content-length']: '145', connection: 'keep-alive', }, body: '------WebKitFormBoundaryoo6vortfDzBsDiro\r\n Content-Disposition: form-data; name="bildbeschreibung"\r\n\r\n\r\n------WebKitFormBoundaryoo6vortfDzBsDiro--' });
Remediation
There is no fixed version for dicer
.
References
high severity
- Vulnerable module: express-fileupload
- Introduced through: express-fileupload@0.3.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-fileupload@0.3.0Remediation: Upgrade to express-fileupload@1.1.6.
Overview
express-fileupload is a file upload middleware for express that wraps around busboy.
Affected versions of this package are vulnerable to Denial of Service (DoS). The package does not limit file name length.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade express-fileupload
to version 1.1.6-alpha.6 or higher.
References
high severity
- Vulnerable module: express-fileupload
- Introduced through: express-fileupload@0.3.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-fileupload@0.3.0Remediation: Upgrade to express-fileupload@1.1.10.
Overview
express-fileupload is a file upload middleware for express that wraps around busboy.
Affected versions of this package are vulnerable to Prototype Pollution. If the parseNested
option is enabled, sending a corrupt HTTP request can lead to denial of service or arbitrary code execution.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade express-fileupload
to version 1.1.10 or higher.
References
high severity
- Vulnerable module: i18next
- Introduced through: i18next@8.4.3
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › i18next@8.4.3Remediation: Upgrade to i18next@19.8.5.
Overview
i18next is an internationalization framework for browser or any other javascript environment (eg. node.js).
Affected versions of this package are vulnerable to Prototype Pollution via getLastOfPath()
in i18next.js
.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade i18next
to version 19.8.5 or higher.
References
high severity
- Vulnerable module: loader-utils
- Introduced through: babel-loader@6.4.1 and webpack@2.7.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-loader@6.4.1 › loader-utils@0.2.17Remediation: Upgrade to babel-loader@7.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › loader-utils@0.2.17Remediation: Upgrade to webpack@3.0.0.
Overview
Affected versions of this package are vulnerable to Prototype Pollution in parseQuery
function via the name variable in parseQuery.js
. This pollutes the prototype of the object returned by parseQuery
and not the global Object prototype (which is the commonly understood definition of Prototype Pollution). Therefore, the actual impact will depend on how applications utilize the returned object and how they filter unwanted keys.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade loader-utils
to version 1.4.1, 2.0.3 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: express-breadcrumbs@0.0.2
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-breadcrumbs@0.0.2 › lodash@2.1.0
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution through the zipObjectDeep
function due to improper user input sanitization in the baseZipObject
function.
PoC
lodash.zipobjectdeep:
const zipObjectDeep = require("lodash.zipobjectdeep");
let emptyObject = {};
console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined
zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function
console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true
lodash:
const test = require("lodash");
let emptyObject = {};
console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined
test.zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function
console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash
to version 4.17.17 or higher.
References
high severity
- Vulnerable module: micromatch
- Introduced through: express-compile-sass@4.0.0, nodemon@1.19.4 and others
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › knex@0.14.6 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10Remediation: Upgrade to knex@0.95.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › connect-session-knex@1.7.3 › knex@0.21.21 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10
…and 5 more
Overview
Affected versions of this package are vulnerable to Inefficient Regular Expression Complexity due to the use of unsafe pattern configurations that allow greedy matching through the micromatch.braces()
function. An attacker can cause the application to hang or slow down by passing a malicious payload that triggers extensive backtracking in regular expression processing.
Remediation
Upgrade micromatch
to version 4.0.8 or higher.
References
high severity
- Vulnerable module: qs
- Introduced through: body-parser@1.18.3 and express@4.16.4
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › body-parser@1.18.3 › qs@6.5.2Remediation: Upgrade to body-parser@1.19.2.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express@4.16.4 › qs@6.5.2Remediation: Upgrade to express@4.17.3.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express@4.16.4 › body-parser@1.18.3 › qs@6.5.2Remediation: Upgrade to express@4.17.3.
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.
Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade qs
to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.
References
high severity
- Vulnerable module: semver
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › semver@5.3.0Remediation: Upgrade to node-sass@5.0.0.
Overview
semver is a semantic version parser used by npm.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range
, when untrusted user data is provided as a range.
PoC
const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]
console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})
const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade semver
to version 5.7.2, 6.3.1, 7.5.2 or higher.
References
high severity
- Vulnerable module: trim-newlines
- Introduced through: dateformat@1.0.12 and node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › dateformat@1.0.12 › meow@3.7.0 › trim-newlines@1.0.0Remediation: Upgrade to dateformat@2.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › meow@3.7.0 › trim-newlines@1.0.0Remediation: Upgrade to node-sass@6.0.1.
Overview
trim-newlines is a Trim newlines from the start and/or end of a string
Affected versions of this package are vulnerable to Denial of Service (DoS) via the end()
method.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
ws
package
Remediation
Upgrade trim-newlines
to version 3.0.1, 4.0.1 or higher.
References
high severity
- Vulnerable module: unset-value
- Introduced through: express-compile-sass@4.0.0, nodemon@1.19.4 and others
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › knex@0.14.6 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › knex@0.14.6 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › knex@0.14.6 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › knex@0.14.6 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › connect-session-knex@1.7.3 › knex@0.21.21 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › connect-session-knex@1.7.3 › knex@0.21.21 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › knex@0.14.6 › liftoff@2.5.0 › findup-sync@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › connect-session-knex@1.7.3 › knex@0.21.21 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › connect-session-knex@1.7.3 › knex@0.21.21 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › braces@2.3.2 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › connect-session-knex@1.7.3 › knex@0.21.21 › liftoff@3.1.0 › findup-sync@3.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › nanomatch@1.2.13 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › anymatch@2.0.0 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › readdirp@2.2.1 › micromatch@3.1.10 › extglob@2.0.4 › expand-brackets@2.1.4 › snapdragon@0.8.2 › base@0.11.2 › cache-base@1.0.1 › unset-value@1.0.0
…and 40 more
Overview
Affected versions of this package are vulnerable to Prototype Pollution via the unset
function in index.js
, because it allows access to object prototype properties.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade unset-value
to version 2.0.1 or higher.
References
high severity
- Vulnerable module: aws-sdk
- Introduced through: express-mailer@0.3.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-mailer@0.3.1 › nodemailer@0.7.1 › aws-sdk@2.0.5
Overview
Affected versions of this package are vulnerable to Prototype Pollution. If an attacker submits a malicious INI file to an application that parses it with loadSharedConfigFiles
, they will pollute the prototype on the application. This can be exploited further depending on the context.
PoC by Eugene Lim:
payload.toml:
[__proto__]
polluted = "polluted"
poc.js:
var fs = require('fs')
var sharedIniFileLoader = require('@aws-sdk/shared-ini-file-loader')
async function main() {
var parsed = await sharedIniFileLoader.loadSharedConfigFiles({ filepath: './payload.toml' })
console.log(parsed)
console.log(parsed.__proto__)
console.log({}.__proto__)
console.log(polluted)
}
main()
> node poc.js
{
configFile: { default: { region: 'ap-southeast-1' } },
credentialsFile: {}
}
{ polluted: '"polluted"' }
{ polluted: '"polluted"' }
"polluted"
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade aws-sdk
to version 2.814.0 or higher.
References
high severity
- Vulnerable module: follow-redirects
- Introduced through: express-mailer@0.3.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-mailer@0.3.1 › nodemailer@0.7.1 › mailcomposer@0.2.12 › follow-redirects@0.0.3
Overview
Affected versions of this package are vulnerable to Improper Handling of Extra Parameters due to the improper handling of URLs by the url.parse()
function. When new URL()
throws an error, it can be manipulated to misinterpret the hostname. An attacker could exploit this weakness to redirect traffic to a malicious site, potentially leading to information disclosure, phishing attacks, or other security breaches.
PoC
# Case 1 : Bypassing localhost restriction
let url = 'http://[localhost]/admin';
try{
new URL(url); // ERROR : Invalid URL
}catch{
url.parse(url); // -> http://localhost/admin
}
# Case 2 : Bypassing domain restriction
let url = 'http://attacker.domain*.allowed.domain:a';
try{
new URL(url); // ERROR : Invalid URL
}catch{
url.parse(url); // -> http://attacker.domain/*.allowed.domain:a
}
Remediation
Upgrade follow-redirects
to version 1.15.4 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: express-breadcrumbs@0.0.2
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-breadcrumbs@0.0.2 › lodash@2.1.0
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The function defaultsDeep
could be tricked into adding or modifying properties of Object.prototype
using a constructor
payload.
PoC by Snyk
const mergeFn = require('lodash').defaultsDeep;
const payload = '{"constructor": {"prototype": {"a0": true}}}'
function check() {
mergeFn({}, JSON.parse(payload));
if (({})[`a0`] === true) {
console.log(`Vulnerable to Prototype Pollution via ${payload}`);
}
}
check();
For more information, check out our blog post
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash
to version 4.17.12 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: express-breadcrumbs@0.0.2
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-breadcrumbs@0.0.2 › lodash@2.1.0
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution via the set
and setwith
functions due to improper user input sanitization.
PoC
lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash
to version 4.17.17 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: express-breadcrumbs@0.0.2
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-breadcrumbs@0.0.2 › lodash@2.1.0
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The functions merge
, mergeWith
, and defaultsDeep
could be tricked into adding or modifying properties of Object.prototype
. This is due to an incomplete fix to CVE-2018-3721
.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash
to version 4.17.11 or higher.
References
high severity
- Vulnerable module: lodash.set
- Introduced through: json2csv@3.11.5
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › json2csv@3.11.5 › lodash.set@4.3.2
Overview
lodash.set is a lodash method _.set exported as a Node.js module.
Affected versions of this package are vulnerable to Prototype Pollution via the set
and setwith
functions due to improper user input sanitization.
Note
lodash.set
is not maintained for a long time. It is recommended to use lodash
library, which contains the fix since version 4.17.17.
PoC
lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
There is no fixed version for lodash.set
.
References
high severity
- Vulnerable module: lodash
- Introduced through: express-breadcrumbs@0.0.2
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-breadcrumbs@0.0.2 › lodash@2.1.0
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Code Injection via template
.
PoC
var _ = require('lodash');
_.template('', { variable: '){console.log(process.env)}; with(obj' })()
Remediation
Upgrade lodash
to version 4.17.21 or higher.
References
medium severity
- Vulnerable module: path-to-regexp
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express@4.16.4 › path-to-regexp@0.1.7Remediation: Upgrade to express@4.20.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, which will produce the regular expression /^\/([^\/]+?)-([^\/]+?)\/?$/
, if two parameters within a single segment are separated by a character other than a /
or .
. Poor performance will block the event loop and can lead to a DoS.
Note:
While the 8.0.0 release has completely eliminated the vulnerable functionality, prior versions that have received the patch to mitigate backtracking may still be vulnerable if custom regular expressions are used. So it is strongly recommended for regular expression input to be controlled to avoid malicious performance degradation in those versions. This behavior is enforced as of version 7.1.0 via the strict
option, which returns an error if a dangerous regular expression is detected.
Workaround
This vulnerability can be avoided by using a custom regular expression for parameters after the first in a segment, which excludes -
and /
.
PoC
/a${'-a'.repeat(8_000)}/a
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade path-to-regexp
to version 0.1.10, 1.9.0, 3.3.0, 6.3.0, 8.0.0 or higher.
References
medium severity
- Vulnerable module: path-to-regexp
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express@4.16.4 › path-to-regexp@0.1.7Remediation: Upgrade to express@4.21.2.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, when the separator is not .
(e.g. no /:a-:b
). Poor performance will block the event loop and can lead to a DoS.
Note:
This issue is caused due to an incomplete fix for CVE-2024-45296.
Workarounds
This can be mitigated by avoiding using two parameters within a single path segment, when the separator is not .
(e.g. no /:a-:b
). Alternatively, the regex used for both parameters can be defined to ensure they do not overlap to allow backtracking.
PoC
/a${'-a'.repeat(8_000)}/a
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade path-to-regexp
to version 0.1.12 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: jsonwebtoken@8.5.1 and passport-jwt@2.2.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › jsonwebtoken@8.5.1Remediation: Upgrade to jsonwebtoken@9.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › passport-jwt@2.2.1 › jsonwebtoken@7.4.3Remediation: Upgrade to passport-jwt@4.0.1.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.
Exploitability
Users are affected when using an algorithm and a key type other than the combinations mentioned below:
EC: ES256, ES384, ES512
RSA: RS256, RS384, RS512, PS256, PS384, PS512
RSA-PSS: PS256, PS384, PS512
And for Elliptic Curve algorithms:
ES256: prime256v1
ES384: secp384r1
ES512: secp521r1
Workaround
Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes
option to true
in the sign()
and verify()
functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: csv-parse
- Introduced through: csv@1.2.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › csv@1.2.1 › csv-parse@1.3.3Remediation: Upgrade to csv@5.0.0.
Overview
csv-parse is a parser converting CSV text input into arrays or objects.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The __isInt()
function contains a malformed regular expression that processes large specially-crafted input very slowly, leading to a Denial of Service. This is triggered when using the cast
option.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade csv-parse
to version 4.4.6 or higher.
References
medium severity
- Vulnerable module: follow-redirects
- Introduced through: express-mailer@0.3.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-mailer@0.3.1 › nodemailer@0.7.1 › mailcomposer@0.2.12 › follow-redirects@0.0.3
Overview
Affected versions of this package are vulnerable to Information Exposure due to the handling of the Proxy-Authorization
header across hosts. When using a dependent library, it only clears the authorization header during cross-domain redirects but allows the proxy-authentication header, which contains credentials, to persist. This behavior may lead to the unintended leakage of credentials if an attacker can trigger a cross-domain redirect and capture the persistent proxy-authentication header.
PoC
const axios = require('axios');
axios.get('http://127.0.0.1:10081/',{
headers: {
'AuThorization': 'Rear Test',
'ProXy-AuthoriZation': 'Rear Test',
'coOkie': 't=1'
}
}).then(function (response) {
console.log(response);
})
Remediation
Upgrade follow-redirects
to version 1.15.6 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: jsonwebtoken@8.5.1 and passport-jwt@2.2.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › jsonwebtoken@8.5.1Remediation: Upgrade to jsonwebtoken@9.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › passport-jwt@2.2.1 › jsonwebtoken@7.4.3Remediation: Upgrade to passport-jwt@4.0.1.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey
argument due to misconfigurations of the key retrieval function jwt.verify()
. Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.
Note:
This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify()
implementation with the same key retrieval function.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Denial of Service (DoS). Uncontrolled recursion is possible in Sass::Complex_Selector::perform
in ast.hpp
and Sass::Inspect::operator
in inspect.cpp
. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Out-of-Bounds. A heap-based buffer over-read exists in Sass::Prelexer::parenthese_scope
in prelexer.hpp
. node-sass
is affected by this vulnerability due to its bundled usage of libsass
.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Out-of-Bounds via Sass::Prelexer::alternatives
in prelexer.hpp
. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Out-of-bounds Read. The function handle_error
in sass_context.cpp
allows attackers to cause a denial-of-service resulting from a heap-based buffer over-read via a crafted sass file. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: request
- Introduced through: request@2.88.2, node-sass@4.14.1 and others
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › request@2.88.2
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › request@2.88.2
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › winston-slack-transport@2.0.0 › request@2.88.2
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › request@2.88.2
…and 1 more
Overview
request is a simplified http request client.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js
file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: request
package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.
Remediation
A fix was pushed into the master
branch but not yet published.
References
medium severity
- Vulnerable module: tar
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › tar@2.2.2Remediation: Upgrade to node-sass@5.0.0.
Overview
tar is a full-featured Tar for Node.js.
Affected versions of this package are vulnerable to Uncontrolled Resource Consumption ('Resource Exhaustion') due to the lack of folders count validation during the folder creation process. An attacker who generates a large number of sub-folders can consume memory on the system running the software and even crash the client within few seconds of running it using a path with too many sub-folders inside.
Remediation
Upgrade tar
to version 6.2.1 or higher.
References
medium severity
- Vulnerable module: tough-cookie
- Introduced through: request@2.88.2, node-sass@4.14.1 and others
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › winston-slack-transport@2.0.0 › request@2.88.2 › tough-cookie@2.5.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › request@2.88.2 › tough-cookie@2.5.0
…and 1 more
Overview
tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.
Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false
mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.
PoC
// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
"Slonser=polluted; Domain=__proto__; Path=/notauth",
"https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
"Auth=Lol; Domain=google.com; Path=/notauth",
"https://google.com/"
);
//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade tough-cookie
to version 4.1.3 or higher.
References
medium severity
- Vulnerable module: json5
- Introduced through: babel-core@6.26.3, webpack@2.7.0 and others
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › json5@0.5.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › json5@0.5.1Remediation: Upgrade to webpack@4.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-register@6.26.0 › babel-core@6.26.3 › json5@0.5.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-loader@6.4.1 › loader-utils@0.2.17 › json5@0.5.1Remediation: Upgrade to babel-loader@7.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › loader-utils@0.2.17 › json5@0.5.1Remediation: Upgrade to webpack@3.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-core@6.26.3 › babel-register@6.26.0 › babel-core@6.26.3 › json5@0.5.1
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › i18next-node-fs-backend@1.2.1 › json5@0.5.0
…and 4 more
Overview
Affected versions of this package are vulnerable to Prototype Pollution via the parse
method , which does not restrict parsing of keys named __proto__
, allowing specially crafted strings to pollute the prototype of the resulting object. This pollutes the prototype of the object returned by JSON5.parse
and not the global Object prototype (which is the commonly understood definition of Prototype Pollution). Therefore, the actual impact will depend on how applications utilize the returned object and how they filter unwanted keys.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade json5
to version 1.0.2, 2.2.2 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: jsonwebtoken@8.5.1 and passport-jwt@2.2.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › jsonwebtoken@8.5.1Remediation: Upgrade to jsonwebtoken@9.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › passport-jwt@2.2.1 › jsonwebtoken@7.4.3Remediation: Upgrade to passport-jwt@4.0.1.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify()
function can lead to signature validation bypass due to defaulting to the none
algorithm for signature verification.
Exploitability
Users are affected only if all of the following conditions are true for the jwt.verify()
function:
A token with no signature is received.
No algorithms are specified.
A falsy (e.g.,
null
,false
,undefined
) secret or key is passed.
Remediation
Upgrade jsonwebtoken
to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: cookie
- Introduced through: csurf@1.11.0, express@4.16.4 and others
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › csurf@1.11.0 › cookie@0.4.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express@4.16.4 › cookie@0.3.1Remediation: Upgrade to express@4.21.1.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › opbeat@4.17.0 › cookie@0.3.1
Overview
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name
, path
, or domain
, which can be used to set unexpected values to other cookie fields.
Workaround
Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade cookie
to version 0.7.0 or higher.
References
medium severity
patched
- Vulnerable module: hoek
- Introduced through: passport-jwt@2.2.1
Vulnerability patched for: passport-jwt jsonwebtoken joi hoek
Vulnerability patched for: passport-jwt jsonwebtoken joi topo hoek
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › passport-jwt@2.2.1 › jsonwebtoken@7.4.3 › joi@6.10.1 › hoek@2.16.3Remediation: Open PR to patch hoek@2.16.3.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › passport-jwt@2.2.1 › jsonwebtoken@7.4.3 › joi@6.10.1 › topo@1.1.0 › hoek@2.16.3Remediation: Open PR to patch hoek@2.16.3.
Overview
hoek is an Utility methods for the hapi ecosystem.
Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object
prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.
PoC by Olivier Arteau (HoLyVieR)
var Hoek = require('hoek');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';
var a = {};
console.log("Before : " + a.oops);
Hoek.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade hoek
to version 4.2.1, 5.0.3 or higher.
References
medium severity
- Vulnerable module: lodash
- Introduced through: express-breadcrumbs@0.0.2
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-breadcrumbs@0.0.2 › lodash@2.1.0
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object
prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.
PoC by Olivier Arteau (HoLyVieR)
var _= require('lodash');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';
var a = {};
console.log("Before : " + a.oops);
_.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash
to version 4.17.5 or higher.
References
medium severity
- Vulnerable module: nodemailer
- Introduced through: express-mailer@0.3.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-mailer@0.3.1 › nodemailer@0.7.1
Overview
nodemailer is an Easy as cake e-mail sending from your Node.js applications
Affected versions of this package are vulnerable to HTTP Header Injection if unsanitized user input that may contain newlines and carriage returns is passed into an address object.
PoC:
const userEmail = 'foo@bar.comrnSubject: foobar'; // imagine this comes from e.g. HTTP request params or is otherwise user-controllable
await transporter.sendMail({
from: '...',
to: '...',
replyTo: {
name: 'Customer',
address: userEmail,
},
subject: 'My Subject',
text: message,
});
Remediation
Upgrade nodemailer
to version 6.6.1 or higher.
References
medium severity
- Vulnerable module: inflight
- Introduced through: archiver@2.1.1 and node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › archiver@2.1.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › archiver@2.1.1 › archiver-utils@1.3.0 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › sass-graph@2.2.5 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › true-case-path@1.0.3 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › archiver@2.1.1 › zip-stream@1.2.0 › archiver-utils@1.3.0 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › gaze@1.1.3 › globule@1.3.4 › glob@7.1.7 › inflight@1.0.6
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › fstream@1.0.12 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › tar@2.2.2 › fstream@1.0.12 › rimraf@2.7.1 › glob@7.2.3 › inflight@1.0.6
…and 8 more
Overview
Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres
function due to improperly deleting keys from the reqs
object after execution of callbacks. This behavior causes the keys to remain in the reqs
object, which leads to resource exhaustion.
Exploiting this vulnerability results in crashing the node
process or in the application crash.
Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.
To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.
PoC
const inflight = require('inflight');
function testInflight() {
let i = 0;
function scheduleNext() {
let key = `key-${i++}`;
const callback = () => {
};
for (let j = 0; j < 1000000; j++) {
inflight(key, callback);
}
setImmediate(scheduleNext);
}
if (i % 100 === 0) {
console.log(process.memoryUsage());
}
scheduleNext();
}
testInflight();
Remediation
There is no fixed version for inflight
.
References
medium severity
- Vulnerable module: express
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express@4.16.4Remediation: Upgrade to express@4.19.2.
Overview
express is a minimalist web framework.
Affected versions of this package are vulnerable to Open Redirect due to the implementation of URL encoding using encodeurl
before passing it to the location
header. This can lead to unexpected evaluations of malformed URLs by common redirect allow list implementations in applications, allowing an attacker to bypass a properly implemented allow list and redirect users to malicious sites.
Remediation
Upgrade express
to version 4.19.2, 5.0.0-beta.3 or higher.
References
medium severity
- Vulnerable module: js-yaml
- Introduced through: i18next-node-fs-backend@1.2.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › i18next-node-fs-backend@1.2.1 › js-yaml@3.5.4Remediation: Upgrade to i18next-node-fs-backend@2.1.2.
Overview
js-yaml is a human-friendly data serialization language.
Affected versions of this package are vulnerable to Denial of Service (DoS). The parsing of a specially crafted YAML file may exhaust the system resources.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade js-yaml
to version 3.13.0 or higher.
References
medium severity
- Vulnerable module: webpack
- Introduced through: webpack@2.7.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0Remediation: Upgrade to webpack@5.94.0.
Overview
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via DOM clobbering in the AutoPublicPathRuntimeModule
class. Non-script HTML elements with unsanitized attributes such as name
and id
can be leveraged to execute code in the victim's browser. An attacker who can control such elements on a page that includes Webpack-generated files, can cause subsequent scripts to be loaded from a malicious domain.
PoC
<!DOCTYPE html>
<html>
<head>
<title>Webpack Example</title>
<!-- Attacker-controlled Script-less HTML Element starts--!>
<img name="currentScript" src="https://attacker.controlled.server/"></img>
<!-- Attacker-controlled Script-less HTML Element ends--!>
</head>
<script src="./dist/webpack-gadgets.bundle.js"></script>
<body>
</body>
</html>
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade webpack
to version 5.94.0 or higher.
References
medium severity
- Vulnerable module: minimist
- Introduced through: knex@0.14.6
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › knex@0.14.6 › minimist@1.2.0Remediation: Upgrade to knex@0.16.4.
Overview
minimist is a parse argument options module.
Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype
using a constructor
or __proto__
payload.
PoC by Snyk
require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true
require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade minimist
to version 0.2.1, 1.2.3 or higher.
References
medium severity
- Vulnerable module: yargs-parser
- Introduced through: webpack@2.7.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › yargs@6.6.0 › yargs-parser@4.2.1Remediation: Upgrade to webpack@4.0.0.
Overview
yargs-parser is a mighty option parser used by yargs.
Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype
using a __proto__
payload.
Our research team checked several attack vectors to verify this vulnerability:
- It could be used for privilege escalation.
- The library could be used to parse user input received from different sources:
- terminal emulators
- system calls from other code bases
- CLI RPC servers
PoC by Snyk
const parser = require("yargs-parser");
console.log(parser('--foo.__proto__.bar baz'));
console.log(({}).bar);
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade yargs-parser
to version 5.0.1, 13.1.2, 15.0.1, 18.1.1 or higher.
References
medium severity
- Vulnerable module: got
- Introduced through: nodemon@1.19.4
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › update-notifier@2.5.0 › latest-version@3.1.0 › package-json@4.0.1 › got@6.7.1Remediation: Upgrade to nodemon@2.0.17.
Overview
Affected versions of this package are vulnerable to Open Redirect due to missing verification of requested URLs. It allowed a victim to be redirected to a UNIX socket.
Remediation
Upgrade got
to version 11.8.5, 12.1.0 or higher.
References
medium severity
- Vulnerable module: express-fileupload
- Introduced through: express-fileupload@0.3.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-fileupload@0.3.0
Overview
express-fileupload is a file upload middleware for express that wraps around busboy.
Affected versions of this package are vulnerable to Arbitrary File Upload that allows attackers to execute arbitrary code when uploading a crafted PHP file.
NOTE: The maintainers of this package dispute its validity on the grounds that the attack vector described is the normal usage of the package.
Remediation
There is no fixed version for express-fileupload
.
References
medium severity
- Vulnerable module: express-fileupload
- Introduced through: express-fileupload@0.3.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-fileupload@0.3.0
Overview
express-fileupload is a file upload middleware for express that wraps around busboy.
Affected versions of this package are vulnerable to Arbitrary File Upload when it is possible for attackers to upload multiple files with the same name, causing an overwrite of files in the web application server.
Remediation
There is no fixed version for express-fileupload
.
References
medium severity
- Vulnerable module: follow-redirects
- Introduced through: express-mailer@0.3.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-mailer@0.3.1 › nodemailer@0.7.1 › mailcomposer@0.2.12 › follow-redirects@0.0.3
Overview
Affected versions of this package are vulnerable to Information Exposure by leaking the cookie header to a third party site in the process of fetching a remote URL with the cookie in the request body. If the response contains a location
header, it will follow the redirect to another URL of a potentially malicious actor, to which the cookie would be exposed.
Remediation
Upgrade follow-redirects
to version 1.14.7 or higher.
References
medium severity
- Vulnerable module: glob-parent
- Introduced through: express-compile-sass@4.0.0, nodemon@1.19.4 and others
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-compile-sass@4.0.0 › chokidar@2.1.8 › glob-parent@3.1.0
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › nodemon@1.19.4 › chokidar@2.1.8 › glob-parent@3.1.0Remediation: Upgrade to nodemon@2.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › watchpack@1.7.5 › watchpack-chokidar2@2.0.1 › chokidar@2.1.8 › glob-parent@3.1.0
Overview
glob-parent is a package that helps extracting the non-magic parent path from a glob string.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The enclosure
regex used to check for strings ending in enclosure containing path separator.
PoC by Yeting Li
var globParent = require("glob-parent")
function build_attack(n) {
var ret = "{"
for (var i = 0; i < n; i++) {
ret += "/"
}
return ret;
}
globParent(build_attack(5000));
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade glob-parent
to version 5.1.2 or higher.
References
medium severity
- Vulnerable module: loader-utils
- Introduced through: babel-loader@6.4.1 and webpack@2.7.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-loader@6.4.1 › loader-utils@0.2.17Remediation: Upgrade to babel-loader@7.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › loader-utils@0.2.17Remediation: Upgrade to webpack@3.0.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the resourcePath
variable in interpolateName.js
.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade loader-utils
to version 1.4.2, 2.0.4, 3.2.1 or higher.
References
medium severity
- Vulnerable module: loader-utils
- Introduced through: babel-loader@6.4.1 and webpack@2.7.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › babel-loader@6.4.1 › loader-utils@0.2.17Remediation: Upgrade to babel-loader@7.0.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › loader-utils@0.2.17Remediation: Upgrade to webpack@3.0.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in interpolateName
function via the URL
variable.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade loader-utils
to version 1.4.2, 2.0.4, 3.2.1 or higher.
References
medium severity
- Vulnerable module: lodash
- Introduced through: express-breadcrumbs@0.0.2
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-breadcrumbs@0.0.2 › lodash@2.1.0
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber
, trim
and trimEnd
functions.
POC
var lo = require('lodash');
function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret + "1";
}
var s = build_blank(50000)
var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0)
var time1 = Date.now();
lo.toNumber(s)
var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1)
var time2 = Date.now();
lo.trimEnd(s)
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2)
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade lodash
to version 4.17.21 or higher.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1Remediation: Upgrade to node-sass@7.0.0.
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Improper Certificate Validation. Certificate validation is disabled by default when requesting binaries, even if the user is not specifying an alternative download path.
Remediation
Upgrade node-sass
to version 7.0.0 or higher.
References
medium severity
- Vulnerable module: nodemailer
- Introduced through: express-mailer@0.3.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-mailer@0.3.1 › nodemailer@0.7.1
Overview
nodemailer is an Easy as cake e-mail sending from your Node.js applications
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the attachDataUrls
parameter or when parsing attachments with an embedded file. An attacker can exploit this vulnerability by sending a specially crafted email that triggers inefficient regular expression evaluation, leading to excessive consumption of CPU resources.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade nodemailer
to version 6.9.9 or higher.
References
medium severity
- Vulnerable module: scss-tokenizer
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › sass-graph@2.2.5 › scss-tokenizer@0.2.3Remediation: Upgrade to node-sass@7.0.2.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the loadAnnotation()
function, due to the usage of insecure regex.
PoC
var scss = require("scss-tokenizer")
function build_attack(n) {
var ret = "a{}"
for (var i = 0; i < n; i++) {
ret += "/*# sourceMappingURL="
}
return ret + "!";
}
// postcss.parse('a{}/*# sourceMappingURL=a.css.map */')
for(var i = 1; i <= 500000; i++) {
if (i % 1000 == 0) {
var time = Date.now();
var attack_str = build_attack(i)
try{
scss.tokenize(attack_str)
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
catch(e){
var time_cost = Date.now() - time;
console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms");
}
}
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade scss-tokenizer
to version 0.4.3 or higher.
References
medium severity
- Vulnerable module: uglify-js
- Introduced through: jade@1.11.0 and webpack@2.7.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › jade@1.11.0 › transformers@2.1.0 › uglify-js@2.2.5
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › jade@1.11.0 › uglify-js@2.8.29
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › webpack@2.7.0 › uglify-js@2.8.29Remediation: Upgrade to webpack@3.0.0.
Overview
uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the string_template
and the decode_template
functions.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade uglify-js
to version 3.14.3 or higher.
References
medium severity
patched
- Vulnerable module: uglify-js
- Introduced through: jade@1.11.0
Vulnerability patched for: jade transformers uglify-js
Vulnerability patched for: jade transformers uglify-js
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › jade@1.11.0 › transformers@2.1.0 › uglify-js@2.2.5Remediation: Open PR to patch uglify-js@2.2.5.
Overview
The parse()
function in the uglify-js
package prior to version 2.6.0 is vulnerable to regular expression denial of service (ReDoS) attacks when long inputs of certain patterns are processed.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade to version 2.6.0
or greater.
If a direct dependency update is not possible, use snyk wizard
to patch this vulnerability.
References
medium severity
- Vulnerable module: xml2js
- Introduced through: express-mailer@0.3.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-mailer@0.3.1 › nodemailer@0.7.1 › aws-sdk@2.0.5 › xml2js@0.2.6
Overview
Affected versions of this package are vulnerable to Prototype Pollution due to allowing an external attacker to edit or add new properties to an object. This is possible because the application does not properly validate incoming JSON keys, thus allowing the __proto__
property to be edited.
PoC
var parseString = require('xml2js').parseString;
let normal_user_request = "<role>admin</role>";
let malicious_user_request = "<__proto__><role>admin</role></__proto__>";
const update_user = (userProp) => {
// A user cannot alter his role. This way we prevent privilege escalations.
parseString(userProp, function (err, user) {
if(user.hasOwnProperty("role") && user?.role.toLowerCase() === "admin") {
console.log("Unauthorized Action");
} else {
console.log(user?.role[0]);
}
});
}
update_user(normal_user_request);
update_user(malicious_user_request);
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade xml2js
to version 0.5.0 or higher.
References
medium severity
- Vulnerable module: express
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express@4.16.4Remediation: Upgrade to express@4.20.0.
Overview
express is a minimalist web framework.
Affected versions of this package are vulnerable to Cross-site Scripting due to improper handling of user input in the response.redirect
method. An attacker can execute arbitrary code by passing malicious input to this method.
Note
To exploit this vulnerability, the following conditions are required:
The attacker should be able to control the input to
response.redirect()
express must not redirect before the template appears
the browser must not complete redirection before:
the user must click on the link in the template
Remediation
Upgrade express
to version 4.20.0, 5.0.0 or higher.
References
medium severity
- Vulnerable module: i18next
- Introduced through: i18next@8.4.3
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › i18next@8.4.3Remediation: Upgrade to i18next@19.5.5.
Overview
i18next is an internationalization framework for browser or any other javascript environment (eg. node.js).
Affected versions of this package are vulnerable to Buffer Overflow. It is possible to cause buffer overflow by changing the translation to be recursive.
Remediation
Upgrade i18next
to version 19.5.5 or higher.
References
medium severity
- Vulnerable module: i18next
- Introduced through: i18next@8.4.3
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › i18next@8.4.3Remediation: Upgrade to i18next@19.8.3.
Overview
i18next is an internationalization framework for browser or any other javascript environment (eg. node.js).
Affected versions of this package are vulnerable to Prototype Pollution. This vulnerability relates to the AddResourceBundle
API which uses the the deepExtend
function (https://github.com/i18next/i18next/blob/master/i18next.js#L361-L370
) internally to extend existing translations in a file. Depending on if user input is provided, an attacker can overwrite and pollute the object prototype of a program.
PoC
import i18n from "i18next";
i18n.init({
resources: {
en: {
namespace1: {
key: 'hello from namespace 1'
},
namespace2: {
key: 'hello from namespace 2'
}
},
de: {
namespace1: {
key: 'hallo von namespace 1'
},
namespace2: {
key: 'hallo von namespace 2'
}
}
}
});
var malicious_payload = '{"__proto__":{"vulnerable":"Polluted"}}';
i18n.init({ resources: {} });
i18n.addResourceBundle('en', 'namespace1', JSON.parse(malicious_payload)
,true,true);
console.log(i18n.options.resources);
//a newly created empty object has the vulnerable property
console.log({}.vulnerable);
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade i18next
to version 19.8.3 or higher.
References
medium severity
- Vulnerable module: passport
- Introduced through: passport@0.3.2 and passport-remember-me@0.0.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › passport@0.3.2Remediation: Upgrade to passport@0.6.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › passport-remember-me@0.0.1 › passport@0.1.18
Overview
passport is a Simple, unobtrusive authentication for Node.js.
Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.
Remediation
Upgrade passport
to version 0.6.0 or higher.
References
medium severity
- Vulnerable module: lodash
- Introduced through: express-breadcrumbs@0.0.2
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-breadcrumbs@0.0.2 › lodash@2.1.0
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It parses dates using regex strings, which may cause a slowdown of 2 seconds per 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade lodash
to version 4.17.11 or higher.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to NULL Pointer Dereference via Sass::Parser::parseCompoundSelector
in parser_selectors.cpp
. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Out-of-bounds Read via Sass::weaveParents
in ast_sel_weave.cpp
. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
There is no fixed version for node-sass
.
References
medium severity
- Vulnerable module: node-sass
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1
Overview
node-sass is a Node.js bindings package for libsass.
Affected versions of this package are vulnerable to Uncontrolled Recursion via Sass::Eval::operator()(Sass::Binary_Expression*)
in eval.cpp
. Note: node-sass
is affected by this vulnerability due to its bundled usage of the libsass
package.
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
There is no fixed version for node-sass
.
References
low severity
- Vulnerable module: clean-css
- Introduced through: jade@1.11.0
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › jade@1.11.0 › clean-css@3.4.28
Overview
clean-css is a fast and efficient CSS optimizer for Node.js platform and any modern browser.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). attacks. This can cause an impact of about 10 seconds matching time for data 70k characters long.
Disclosure Timeline
- Feb 15th, 2018 - Initial Disclosure to package owner
- Feb 20th, 2018 - Initial Response from package owner
- Mar 6th, 2018 - Fix issued
- Mar 7th, 2018 - Vulnerability published
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade clean-css
to version 4.1.11 or higher.
References
low severity
patched
- Vulnerable module: mime
- Introduced through: express-mailer@0.3.1
Vulnerability patched for: express-mailer nodemailer mailcomposer mime
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-mailer@0.3.1 › nodemailer@0.7.1 › mailcomposer@0.2.12 › mime@1.2.11Remediation: Open PR to patch mime@1.2.11.
Overview
mime is a comprehensive, compact MIME type module.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex /.*[\.\/\\]/
in its lookup, which can cause a slowdown of 2 seconds for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mime
to version 1.4.1, 2.0.3 or higher.
References
low severity
- Vulnerable module: minimist
- Introduced through: knex@0.14.6
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › knex@0.14.6 › minimist@1.2.0Remediation: Upgrade to knex@0.16.4.
Overview
minimist is a parse argument options module.
Affected versions of this package are vulnerable to Prototype Pollution due to a missing handler to Function.prototype
.
Notes:
This vulnerability is a bypass to CVE-2020-7598
The reason for the different CVSS between CVE-2021-44906 to CVE-2020-7598, is that CVE-2020-7598 can pollute objects, while CVE-2021-44906 can pollute only function.
PoC by Snyk
require('minimist')('--_.constructor.constructor.prototype.foo bar'.split(' '));
console.log((function(){}).foo); // bar
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__
, constructor
and prototype
. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype
are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Object
recursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__
defined with Object.defineProperty()
, the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object
and the source of Object
as defined by the attacker. Properties are then copied on the Object
prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source)
.
lodash
and Hoek
are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue
. myValue
is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
Type | Origin | Short description |
---|---|---|
Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf ). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object . In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr) . In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin , then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true , they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype)
.Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)
), breaking the prototype chain and preventing pollution.As a best practice use
Map
instead ofObject
.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade minimist
to version 0.2.4, 1.2.6 or higher.
References
low severity
- Vulnerable module: tar
- Introduced through: node-sass@4.14.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › node-sass@4.14.1 › node-gyp@3.8.0 › tar@2.2.2Remediation: Upgrade to node-sass@5.0.0.
Overview
tar is a full-featured Tar for Node.js.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). When stripping the trailing slash from files
arguments, the f.replace(/\/+$/, '')
performance of this function can exponentially degrade when f
contains many /
characters resulting in ReDoS.
This vulnerability is not likely to be exploitable as it requires that the untrusted input is being passed into the tar.extract()
or tar.list()
array of entries to parse/extract, which would be unusual.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
A
The string must start with the letter 'A'(B|C+)+
The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+
matches one or more times). The+
at the end of this section states that we can look for one or more matches of this section.D
Finally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD
, ABCCCCD
, ABCBCCCD
and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
String | Number of C's | Number of steps |
---|---|---|
ACCCX | 3 | 38 |
ACCCCX | 4 | 71 |
ACCCCCX | 5 | 136 |
ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade tar
to version 6.1.4, 5.0.8, 4.4.16 or higher.
References
low severity
- Vulnerable module: follow-redirects
- Introduced through: express-mailer@0.3.1
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express-mailer@0.3.1 › nodemailer@0.7.1 › mailcomposer@0.2.12 › follow-redirects@0.0.3
Overview
Affected versions of this package are vulnerable to Information Exposure due a leakage of the Authorization header from the same hostname during HTTPS to HTTP redirection. An attacker who can listen in on the wire (or perform a MITM attack) will be able to receive the Authorization header due to the usage of the insecure HTTP protocol which does not verify the hostname the request is sending to.
Remediation
Upgrade follow-redirects
to version 1.14.8 or higher.
References
low severity
- Vulnerable module: send
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express@4.16.4 › send@0.16.2Remediation: Upgrade to express@4.20.0.
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express@4.16.4 › serve-static@1.13.2 › send@0.16.2Remediation: Upgrade to express@4.21.0.
Overview
send is a Better streaming static file server with Range and conditional-GET support
Affected versions of this package are vulnerable to Cross-site Scripting due to improper user input sanitization passed to the SendStream.redirect()
function, which executes untrusted code. An attacker can execute arbitrary code by manipulating the input parameters to this method.
Note:
Exploiting this vulnerability requires the following:
The attacker needs to control the input to
response.redirect()
Express MUST NOT redirect before the template appears
The browser MUST NOT complete redirection before
The user MUST click on the link in the template
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade send
to version 0.19.0, 1.1.0 or higher.
References
low severity
- Vulnerable module: serve-static
- Introduced through: express@4.16.4
Detailed paths
-
Introduced through: spark@Midburn/Spark#070b531ba796558a0451c3f8597330689e0db9f9 › express@4.16.4 › serve-static@1.13.2Remediation: Upgrade to express@4.20.0.
Overview
serve-static is a server.
Affected versions of this package are vulnerable to Cross-site Scripting due to improper sanitization of user input in the redirect
function. An attacker can manipulate the redirection process by injecting malicious code into the input.
Note
To exploit this vulnerability, the following conditions are required:
The attacker should be able to control the input to
response.redirect()
express must not redirect before the template appears
the browser must not complete redirection before:
the user must click on the link in the template
Details
A cross-site scripting attack occurs when the attacker tricks a legitimate web-based application or site to accept a request as originating from a trusted source.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, <
can be coded as <
; and >
can be coded as >
; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses <
and >
as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
Type | Origin | Description |
---|---|---|
Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?
,&
,/
,<
,>
and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade serve-static
to version 1.16.0, 2.1.0 or higher.