How to use the streamlit.subheader function in streamlit

To help you get started, we’ve selected a few streamlit examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github MarcSkovMadsen / awesome-streamlit / package / awesome_streamlit / testing / components.py View on Github external
def test_run_section(test_items: List[TesTItem]):
    """This section tests each test_item and reports the Test Results and Exception Log

    Arguments:
        test_item {TesTItem} -- The TesTItem to be tested
    """
    # Setup Sub Section
    st.subheader("""Run tests""")

    test_runner_progress_bar = st.progress(0)
    test_runner_current_file_url = st.empty()

    st.subheader("Results")
    result_table_section = st.empty()

    st.subheader("Exceptions log")
    result_exception_section = st.empty()
    log = ""

    st.subheader("Screen output")

    test_items_dataframe = services.test_items_dataframe.create_from_test_items(
        test_items
    )
    result_table_section.table(test_items_dataframe)

    test_items_count = len(test_items)
    for index, test_item in enumerate(test_items):
        _progress_section(
github zacheberhart / Learning-to-Feel / src / app.py View on Github external
track_id = track_id.split('?')[0].split('/track/')[1]
	show_spectros = st.checkbox('Show Spectrograms', value = False)

	# check if a track_id has been entered
	if len(track_id) > 0:
	
		# get track from Spotify API
		track = get_spotify_track(track_id)
		st.subheader('Track Summary')
		st.table(get_track_summmary_df(track))

		# check if there is track preview available from Spotify
		if track['preview_url']:

			# display 30 second track preview
			st.subheader('Track Preview (What the Algorithm "Hears")')
			st.write('')
			preview = get_track_preview(track_id)
			st.audio(preview)

			# get top and bottom labels for the track
			st.subheader('Track Analysis')
			track_df = deepcopy(DF[DF.track_id == track_id].reset_index(drop = True))

			# return values from db if already classified, otherwise classify
			if len(track_df) > 0:
				track_df = deepcopy(track_df.iloc[:,5:].T.rename(columns = {0: 'score'}).sort_values('score', ascending = False))
				st.table(pd.DataFrame({'Top 5': track_df[:5].index.tolist(), 'Bottom 5': track_df[-5:].index.tolist()}))
				if show_spectros: generate_spectros(preview)
			else:
				generate_spectros(preview)
				track_df = get_predictions()
github IliaLarchenko / albumentations-demo / src / utils.py View on Github external
def show_random_params(data: dict, interface_type: str = "Professional"):
    """Shows random params used for transformation (from A.ReplayCompose)"""
    if interface_type == "Professional":
        st.subheader("Random params used")
        random_values = {}
        for applied_params in data["replay"]["transforms"]:
            random_values[
                applied_params["__class_fullname__"].split(".")[-1]
            ] = applied_params["params"]
        st.write(random_values)
github streamlit / streamlit / examples / vega_lite_chart.py View on Github external
}
      }, {
        "transform": [{"filter": {"selection": "CylYr"}}],
        "mark": "circle",
        "encoding": {
          "x": {"field": "Horsepower", "type": "quantitative"},
          "y": {"field": "Miles_per_Gallon", "type": "quantitative"},
          "color": {"field": "Origin", "type": "nominal"},
          "size": {"value": 100}
        }
      }]
    })

# -

st.subheader('Geo chart (WIP)')

DATA_URL = 'https://s3-us-west-2.amazonaws.com/streamlit-demo-data/uber-raw-data-sep14.csv.gz'
df = pd.read_csv(DATA_URL, nrows=1000)
df['hour'] = df['Date/Time'].apply(lambda x: parse(x).hour)
df = df.rename(str.lower, axis='columns')

st.vega_lite_chart(df, {
  "$schema": "https://vega.github.st/schema/vega-lite/v2.1.json",
  "height": 500,
  "projection": {
    "type": "albersUsa"
  },
  "mark": "circle",
  "encoding": {
    "longitude": {
      "field": "lon",
github streamlit / streamlit / examples / empty_charts.py View on Github external
the dataframe you pass in at the start. So when there's no dataframe we
    cannot detect that configuration.
"""
)

data = pd.DataFrame({"a": [1, 2, 3, 4], "b": [1, 3, 2, 4]})

spec = {
    "mark": "line",
    "encoding": {
        "x": {"field": "a", "type": "quantitative"},
        "y": {"field": "b", "type": "quantitative"},
    },
}

st.subheader("Here are 4 empty charts")
st.vega_lite_chart(spec)
st.line_chart()
st.area_chart()
st.bar_chart()

st.write("Below is an empty pyplot chart (i.e. just a blank image)")
st.pyplot()
st.write("...and that was it.")

st.subheader("Here are 5 filled charts")
x = st.vega_lite_chart(spec)
x.vega_lite_chart(data, spec)

x = st.vega_lite_chart(spec)
time.sleep(0.2)  # Sleep a little so the add_rows gets sent separately.
x.add_rows(data)
github pesser / edflow / edflow / util / edexplore.py View on Github external
visualizations:
                optical_flow_on_image:
                    image_key: "images/0/image"
                    flow_key: "forward_flow"
                    vector_frequency: 5
                    flow_downsample_method: max_magnitude

    Parameters
    ----------
    ex : dict
        Example dict from dataset
    config : dict
        Config dict
    """

    st.subheader("Optical flow on image")

    # get user input
    image, image_key = st_get_list_or_dict_item(
        ex,
        "image",
        filter_fn=isimage,
        config=config,
        config_key="edexplore/visualizations/optical_flow_on_image/image_key",
    )
    flow, flow_key = st_get_list_or_dict_item(
        ex,
        "flow",
        filter_fn=isflow,
        config=config,
        config_key="edexplore/visualizations/optical_flow_on_image/flow_key",
    )
github leenamurgai / debias-ml / source / analysis.py View on Github external
st.write('')
st.write(top_n_correlated_features(data_df, target_col, 10))
st.write('')
st.write('**Top 10 most correlated features to the bias feature**')
for b in bias_cols:
    st.write('')
    st.write(top_n_correlated_features(data_df, b, 10))
st.write('')
st.write('**Correlation Heatmap**')
corr_df = data_df.corr()
heatmap(corr_df, 'correlation-heat-map')

################################################################################

st.write('')
st.subheader('2.4 Splitting data into training and test sets')
st.write('')

X_all = data_df[feature_cols]
y_all = data_df[target_col]
Z_all = data_df[bias_cols]

# Splitting the original dataset into training and testing parts
(X_train, X_train2, X_train1, X_test,
y_train, y_train2, y_train1, y_test,
Z_train, Z_test) = make_training_and_test_sets(X_all, y_all, Z_all, n_train)
X_train, X_train2, X_train1, X_test = normalise(X_train,  X_train2,  X_train1, X_test)

st.write('Training set: {} samples'.format(X_train.shape[0]))
st.write('Test set: {} samples'.format(X_test.shape[0]))

################################################################################
github MarcSkovMadsen / awesome-streamlit / gallery / iris_eda_app / iris_eda_app.py View on Github external
st.image(load_image("imgs/iris_versicolor.jpg"), width=400)
    elif species_type == "Virginica":
        st.text("Showing Virginica Species")
        st.image(load_image("imgs/iris_virginica.jpg"), width=400)

    # Show Image or Hide Image with Checkbox
    if st.checkbox("Show Image/Hide Image"):
        my_image = load_image("iris_setosa.jpg")
        enh = ImageEnhance.Contrast(my_image)
        num = st.slider("Set Your Contrast Number", 1.0, 3.0)
        img_width = st.slider("Set Image Width", 300, 500)
        st.image(enh.enhance(num), width=img_width)

    # About
    if st.button("About App"):
        st.subheader("Iris Dataset EDA App")
        st.text("Built with Streamlit")
        st.text("Thanks to the Streamlit Team Amazing Work")

    if st.checkbox("By"):
        st.text("Jesse E.Agbe(JCharis)")
        st.text("Jesus Saves@JCharisTech")
github streamlit / streamlit / examples / reference.py View on Github external
st.write(
    "Charts are just as simple, but they require us to introduce some "
    "special functions first."
)

st.write("So assuming `data_frame` has been defined as...")

with st.echo():
    chart_data = pd.DataFrame(
        np.random.randn(20, 5), columns=["pv", "uv", "a", "b", "c"]
    )

st.write("...you can easily draw the charts below:")

st.subheader("Example of line chart")

with st.echo():
    st.line_chart(chart_data)

st.write(
    "As you can see, each column in the dataframe becomes a different "
    "line. Also, values on the _x_ axis are the dataframe's indices. "
    "Which means we can customize them this way:"
)

with st.echo():
    chart_data2 = pd.DataFrame(
        np.random.randn(20, 2),
        columns=["stock 1", "stock 2"],
        index=pd.date_range("1/2/2011", periods=20, freq="M"),
    )
github MarcSkovMadsen / awesome-streamlit / gallery / yahoo_finance_app / yahoo_finance_app.py View on Github external
if sma2:
        period2 = st.sidebar.slider(
            "SMA2 period", min_value=5, max_value=500, value=100, step=1
        )
        data[f"SMA2 {period2}"] = data["Adj Close"].rolling(period2).mean()
        data2[f"SMA2 {period2}"] = data[f"SMA2 {period2}"].reindex(data2.index)

    st.subheader("Chart")
    st.line_chart(data2)

    if st.sidebar.checkbox("View stadistic"):
        st.subheader("Stadistic")
        st.table(data2.describe())

    if st.sidebar.checkbox("View quotes"):
        st.subheader(f"{asset} historical data")
        st.write(data2)

    st.sidebar.title("About")
    st.sidebar.info(
        "This app is a simple example of "
        "using Strealit to create a financial data web app.\n"