Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def select_number_of_rows_and_columns(results: pd.DataFrame, key: str):
rows = st.selectbox(
"Select number of table rows to display",
options=[5, 10, 50, 100, 500, 1000, 5000, 10000, 50000, len(results)],
key=key,
)
columns = st.slider(
"Select number of table columns to display",
0,
len(results.columns) - 1,
DEFAULT_NUMBER_OF_COLUMNS,
key=key,
)
style = st.checkbox("Style dataframe?", False, key=key)
return rows, columns, style
f"""
Source Data: [Player Minutes]({PLAYER_MINUTES_GITHUB}), [Roster Turnover]({ROSTER_TURNOVER_GITHUB}),
[Teams Data]({TEAMS_DATA_GITHUB})
"""
)
# Loading data
with st.spinner("Loading data ..."):
image = get_image()
player_minutes = load_player_minutes().copy(deep=True)
roster_turnover = load_roster_turnover().copy(deep=True)
team_colors = load_teams_colors()
wins_turnover_corr = load_wins_turnover_corr(roster_turnover)
st.header("Correlation by year")
year = st.slider("Select a Year", 2004, 2019)
teams = get_teams(year)
teams_colorscale = get_teams_colorscale(teams, team_colors)
st.write(f"Correlation Coefficient: {wins_turnover_corr[year]}")
st.sidebar.image(image, use_column_width=True)
st.sidebar.markdown(
"Explore NBA roster turnover since\nthe 2003-04 season. **Roster turnover** is \ndefined as the "
"sum of the absolute difference\nin total minutes played by each player\non a given team between any two "
"years."
)
st.sidebar.table(
pd.DataFrame.from_dict(
wins_turnover_corr, orient="index", columns=["correlation"]
).round(2)
)
width=0,
)
image.putalpha(alpha)
return np.array(image).astype("float") / 255.0
if True:
st.title("Image, checkbox and slider test")
st.write("Script ran at", datetime.datetime.now().isoformat())
st.subheader("Background color")
r_color = st.slider("Red amount", 0, 100)
g_color = st.slider("Green amount", 0, 100)
b_color = st.slider("Blue amount", 0, 100)
alpha_pct = st.slider("Alpha amount", 0, 100, 50)
image = create_image(r_color, g_color, b_color, alpha_pct)
r = image[:, :, 0]
g = image[:, :, 1]
b = image[:, :, 2]
alpha = image[:, :, 3]
z = np.zeros(r.shape)
mask = np.ones(r.shape)
image = np.stack([r, g, b], 2)
st.subheader("Channels to include in output")
r_on = st.checkbox("Red", True)
f"""
Source Data: [Player Minutes]({PLAYER_MINUTES_GITHUB}), [Roster Turnover]({ROSTER_TURNOVER_GITHUB}),
[Teams Data]({TEAMS_DATA_GITHUB})
"""
)
# Loading data
with st.spinner("Loading data ..."):
image = get_image()
player_minutes = load_player_minutes().copy(deep=True)
roster_turnover = load_roster_turnover().copy(deep=True)
team_colors = load_teams_colors()
wins_turnover_corr = load_wins_turnover_corr(roster_turnover)
st.header("Correlation by year")
year = st.slider("Select a Year", 2004, 2019)
teams = get_teams(year)
teams_colorscale = get_teams_colorscale(teams, team_colors)
st.write(f"Correlation Coefficient: {wins_turnover_corr[year]}")
st.sidebar.image(image, use_column_width=True)
st.sidebar.markdown(
"Explore NBA roster turnover since\nthe 2003-04 season. **Roster turnover** is \ndefined as the "
"sum of the difference\nin total minutes played by each player\non a given team between any two "
"years."
)
st.sidebar.table(
pd.DataFrame.from_dict(
wins_turnover_corr, orient="index", columns=["correlation"]
).round(2)
)
def plot_section():
st.markdown(
"""
## Interactive plot - Streamlit
"""
)
x = get_x()
mu = st.slider(
"mu", value=float(0), min_value=float(-5), max_value=float(5), step=float(0.1)
)
sigma = st.slider(
"sigma",
value=float(1),
min_value=float(0.1),
max_value=float(5),
step=float(0.1),
)
plot_figure(x, mu, sigma)
if species_type == "Setosa":
st.text("Showing Setosa Species")
st.image(load_image("imgs/iris_setosa.jpg"), width=400)
elif species_type == "Versicolor":
st.text("Showing Versicolor Species")
st.image(load_image("imgs/iris_versicolor.jpg"), width=400)
elif species_type == "Virginica":
st.text("Showing Virginica Species")
st.image(load_image("imgs/iris_virginica.jpg"), width=400)
# Show Image or Hide Image with Checkbox
if st.checkbox("Show Image/Hide Image"):
my_image = load_image("iris_setosa.jpg")
enh = ImageEnhance.Contrast(my_image)
num = st.slider("Set Your Contrast Number", 1.0, 3.0)
img_width = st.slider("Set Image Width", 300, 500)
st.image(enh.enhance(num), width=img_width)
# About
if st.button("About App"):
st.subheader("Iris Dataset EDA App")
st.text("Built with Streamlit")
st.text("Thanks to the Streamlit Team Amazing Work")
if st.checkbox("By"):
st.text("Jesse E.Agbe(JCharis)")
st.text("Jesus Saves@JCharisTech")
[See source code](https://github.com/streamlit/demo-uber-nyc-pickups/blob/master/app.py)
""")
@st.cache(persist=True)
def load_data(nrows):
data = pd.read_csv(DATA_URL, nrows=nrows)
lowercase = lambda x: str(x).lower()
data.rename(lowercase, axis="columns", inplace=True)
data[DATE_TIME] = pd.to_datetime(data[DATE_TIME])
return data
data = load_data(100000)
hour = st.slider("Hour to look at", 0, 23)
data = data[data[DATE_TIME].dt.hour == hour]
st.subheader("Geo data between %i:00 and %i:00" % (hour, (hour + 1) % 24))
midpoint = (np.average(data["lat"]), np.average(data["lon"]))
st.write(pdk.Deck(
map_style="mapbox://styles/mapbox/light-v9",
initial_view_state={
"latitude": midpoint[0],
"longitude": midpoint[1],
"zoom": 11,
"pitch": 50,
},
layers=[
pdk.Layer(
import streamlit as st
x = st.slider('x')
st.write(x, 'squared is', x * x)
values = st.slider('Select a range of values', 0, 100, (50))
st.write('Values:', values)
values1 = st.slider('Select a range of values', 0, 100, (25,50))
st.write('Values:', values1)
values2 = st.slider('Select a range of values', (50))
st.write('Values:', values2)
def view(self):
"""Map dashboard"""
st.markdown(__doc__)
self.dataset_name = st.selectbox("Select Data Set", options=self.dataset_names, index=0)
self.year = st.slider(
"Select Year",
min_value=self.year_range[0],
max_value=self.year_range[1],
value=self.year,
)
st.bokeh_chart(self.map_plot())
st.markdown(INFO)
st.markdown(self.download_link(), unsafe_allow_html=True)
# load all data
df = load_data()
non_label_cols = ['track_id', 'track_title', 'artist_name', 'track_popularity', 'artist_popularity']
dims = [c for c in df.columns.tolist() if c not in non_label_cols]
# Mood or Emotion Selection
st.title('Explore All Moods & Emotions')
st.write('''
Select a mood, an emotion, or a few of each! However, keep in mind that results are best when
you choose as few as possible -- though you will definitely get some pretty funky results the more you add.
''')
# filters
labels = st.multiselect("Choose:", dims)
n_songs = st.slider('How many songs?', 1, 100, 20)
popularity = st.slider('How popular?', 0, 100, (0, 100))
try:
# filter data to the labels the user specified
cols = (non_label_cols, labels)
df = filter_data(df, cols, n_songs, popularity)
# show data
if st.checkbox('Include Preview URLs', value = True):
df['preview'] = add_stream_url(df.track_id)
df['preview'] = df['preview'].apply(make_clickable, args = ('Listen',))
data = df.drop('track_id', 1)
data = data.to_html(escape = False)
st.write(data, unsafe_allow_html = True)
else: