Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
if page == "🔨 Test Recommendation":
st.header("Test the Recommendations")
st.info("Upon the first opening the data will start loading."
"\n Unfortunately there is no progress verbose in streamlit. Look in your console.")
st.success('Data is loaded!')
models = load_models(device)
st.success('Models are loaded!')
state, action, reward, next_state, done = get_batch(device)
st.subheader('Here is a random batch sampled from testing environment:')
if st.checkbox('Print batch info'):
st.subheader('State')
st.write(state)
st.subheader('Action')
st.write(action)
st.subheader('Reward')
st.write(reward.squeeze())
st.subheader('(Optional) Select the state are getting the recommendations for')
action_id = np.random.randint(0, state.size(0), 1)[0]
action_id_manual = st.checkbox('Manually set state index')
if action_id_manual:
action_id = st.slider("Choose state index:", min_value=0, max_value=state.size(0))
st.write('state:', state[action_id])
# Show All Column Names
if st.checkbox("Show All Column Name"):
st.text("Columns:")
st.write(data.columns)
# Show Dimensions and Shape of Dataset
data_dim = st.radio("What Dimension Do You Want to Show", ("Rows", "Columns"))
if data_dim == "Rows":
st.text("Showing Length of Rows")
st.write(len(data))
if data_dim == "Columns":
st.text("Showing Length of Columns")
st.write(data.shape[1])
# Show Summary of Dataset
if st.checkbox("Show Summary of Dataset"):
st.write(data.describe())
# Selection of Columns
species_option = st.selectbox(
"Select Columns",
("sepal_length", "sepal_width", "petal_length", "petal_width", "species"),
)
if species_option == "sepal_length":
st.write(data["sepal_length"])
elif species_option == "sepal_width":
st.write(data["sepal_width"])
elif species_option == "petal_length":
st.write(data["petal_length"])
elif species_option == "petal_width":
st.write(data["petal_width"])
elif species_option == "species":
you choose as few as possible -- though you will definitely get some pretty funky results the more you add.
''')
# filters
labels = st.multiselect("Choose:", dims)
n_songs = st.slider('How many songs?', 1, 100, 20)
popularity = st.slider('How popular?', 0, 100, (0, 100))
try:
# filter data to the labels the user specified
cols = (non_label_cols, labels)
df = filter_data(df, cols, n_songs, popularity)
# show data
if st.checkbox('Include Preview URLs', value = True):
df['preview'] = add_stream_url(df.track_id)
df['preview'] = df['preview'].apply(make_clickable, args = ('Listen',))
data = df.drop('track_id', 1)
data = data.to_html(escape = False)
st.write(data, unsafe_allow_html = True)
else:
data = df.drop('track_id', 1)
st.write(data)
except: pass
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import streamlit as st
i1 = st.button("button 1")
st.write("value:", i1)
i2 = st.checkbox("reset button")
def main():
"""## Main function of Iris Classifier App
Run this to run the app.
"""
st.title("Iris Classifier")
st.header("Data Exploration")
source_df = read_iris_csv()
st.subheader("Source Data")
if st.checkbox("Show Source Data"):
st.write(source_df)
selected_species_df = select_species(source_df)
if not selected_species_df.empty:
show_scatter_plot(selected_species_df)
show_histogram_plot(selected_species_df)
else:
st.info("Please select one of more varieties above for further exploration.")
show_machine_learning_model(source_df)
def write():
"""Writes content to the app"""
ast.shared.components.title_awesome("Resources")
st.sidebar.title("Resources")
tags = ast.shared.components.multiselect(
"Select Tag(s)", options=ast.database.TAGS, default=[]
)
author_all = ast.shared.models.Author(name="All", url="")
author = st.selectbox("Select Author", options=[author_all] + ast.database.AUTHORS)
if author == author_all:
author = None
show_awesome_resources_only = st.checkbox("Show Awesome Resources Only", value=True)
if not tags:
st.info(
"""Please note that **we list each resource under a most important tag only!**"""
)
resource_section = st.empty()
with st.spinner("Loading resources ..."):
markdown = resources.get_resources_markdown(
tags, author, show_awesome_resources_only
)
resource_section.markdown(markdown)
if st.sidebar.checkbox("Show Resource JSON"):
st.subheader("Source JSON")
st.write(ast.database.RESOURCES)
# Show Image or Hide Image with Checkbox
if st.checkbox("Show Image/Hide Image"):
my_image = load_image("iris_setosa.jpg")
enh = ImageEnhance.Contrast(my_image)
num = st.slider("Set Your Contrast Number", 1.0, 3.0)
img_width = st.slider("Set Image Width", 300, 500)
st.image(enh.enhance(num), width=img_width)
# About
if st.button("About App"):
st.subheader("Iris Dataset EDA App")
st.text("Built with Streamlit")
st.text("Thanks to the Streamlit Team Amazing Work")
if st.checkbox("By"):
st.text("Jesse E.Agbe(JCharis)")
st.text("Jesus Saves@JCharisTech")
# Show Dataset
if st.checkbox("Preview DataFrame"):
if st.button("Head"):
st.write(data.head())
if st.button("Tail"):
st.write(data.tail())
else:
st.write(data.head(2))
# Show Entire Dataframe
if st.checkbox("Show All DataFrame"):
st.dataframe(data)
# Show All Column Names
if st.checkbox("Show All Column Name"):
st.text("Columns:")
st.write(data.columns)
# Show Dimensions and Shape of Dataset
data_dim = st.radio("What Dimension Do You Want to Show", ("Rows", "Columns"))
if data_dim == "Rows":
st.text("Showing Length of Rows")
st.write(len(data))
if data_dim == "Columns":
st.text("Showing Length of Columns")
st.write(data.shape[1])
# Show Summary of Dataset
if st.checkbox("Show Summary of Dataset"):
st.write(data.describe())
# Your code goes below
# Our Dataset
my_dataset = "iris.csv"
# To Improve speed and cache data
@st.cache(persist=True)
def explore_data(dataset):
df = pd.read_csv(os.path.join(dataset))
return df
# Load Our Dataset
data = explore_data(my_dataset)
# Show Dataset
if st.checkbox("Preview DataFrame"):
if st.button("Head"):
st.write(data.head())
if st.button("Tail"):
st.write(data.tail())
else:
st.write(data.head(2))
# Show Entire Dataframe
if st.checkbox("Show All DataFrame"):
st.dataframe(data)
# Show All Column Names
if st.checkbox("Show All Column Name"):
st.text("Columns:")
st.write(data.columns)
if result:
# Process you file here
value = result.getvalue()
# And add it to the static_store if not already in
if not value in static_store.values():
static_store[result] = value
else:
static_store.clear() # Hack to clear list if the user clears the cache and reloads the page
st.info("Upload one or more `.py` files.")
if st.button("Clear file list"):
static_store.clear()
if st.checkbox("Show file list?", True):
st.write(list(static_store.keys()))
if st.checkbox("Show content of files?"):
for value in static_store.values():
st.code(value)