Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def configuration(other_graph = False):
df_binary= pd.DataFrame({"threshold":["No","Yes"],
"fill":["No","Yes"],
"legend":["Yes","No"]})
threshold=False
fill=False
legend=True
number_threshold = 100
if st.sidebar.checkbox("Show settings"):
#Threshold visualization
option_threshold= st.sidebar.selectbox("Threshold",list(df_binary["threshold"]), index = 0)
threshold = True if option_threshold == "Yes" else False
#Fill visualization
if other_graph == False:
option_fill= st.sidebar.selectbox("Fill",list(df_binary["fill"]), index = 0)
fill = True if option_fill == "Yes" else False
if other_graph:
fill = None
#Legend visualization
option_legend= st.sidebar.selectbox("Legend",list(df_binary["legend"]), index = 0)
legend = True if option_legend == "Yes" else False
number_threshold = st.sidebar.slider("Number of thresholds:", min_value = 0,
max_value = 100, value = 100)
"""
)
model_load_state = st.info(f"Loading model '{spacy_model}'...")
nlp = spacy.load('en_blackstone_proto')
model_load_state.empty()
text = st.text_area("Text to analyze", DEFAULT_TEXT)
doc = process_text(spacy_model, text)
if "parser" in nlp.pipe_names:
st.header("Dependency Parse & Part-of-speech tags")
st.sidebar.header("Dependency Parse")
split_sents = st.sidebar.checkbox("Split sentences", value=True)
collapse_punct = st.sidebar.checkbox("Collapse punctuation", value=True)
collapse_phrases = st.sidebar.checkbox("Collapse phrases")
compact = st.sidebar.checkbox("Compact mode")
options = {
"collapse_punct": collapse_punct,
"collapse_phrases": collapse_phrases,
"compact": compact,
}
docs = [span.as_doc() for span in doc.sents] if split_sents else [doc]
for sent in docs:
html = displacy.render(sent, options=options)
# Double newlines seem to mess with the rendering
html = html.replace("\n\n", "\n")
if split_sents and len(docs) > 1:
st.markdown(f"> {sent.text}")
st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)
def select_block_container_style():
"""Add selection section for setting setting the max-width and padding
of the main block container"""
st.sidebar.header("Block Container Style")
max_width_100_percent = st.sidebar.checkbox("Max-width: 100%?", False)
if not max_width_100_percent:
max_width = st.sidebar.slider("Select max-width in px", 100, 2000, 1200, 100)
else:
max_width = 1200
dark_theme = st.sidebar.checkbox("Dark Theme?", False)
padding_top = st.sidebar.number_input("Select padding top in rem", 0, 200, 5, 1)
padding_right = st.sidebar.number_input("Select padding right in rem", 0, 200, 1, 1)
padding_left = st.sidebar.number_input("Select padding left in rem", 0, 200, 1, 1)
padding_bottom = st.sidebar.number_input(
"Select padding bottom in rem", 0, 200, 10, 1
)
if dark_theme:
global COLOR
global BACKGROUND_COLOR
BACKGROUND_COLOR = "rgb(17,17,17)"
COLOR = "#fff"
'Daily': 7,
'Monthly': 12,
'Quarterly': 4,
'Yearly': 5}
if menu_name == 'absolute':
show_absolute_plot = st.sidebar.checkbox('Historical data', value=True)
return show_absolute_plot
elif menu_name == 'seasonal':
show_seasonal_decompose = st.sidebar.checkbox('Seasonal decompose', value=True)
return show_seasonal_decompose
elif menu_name == 'adfuller':
show_adfuller = st.sidebar.checkbox('Dickey-Fuller statistical test', value=True)
return show_adfuller
elif menu_name == 'train_predictions':
show_train_predict_plot = st.sidebar.checkbox('Train set predictions', value=True)
return show_train_predict_plot
elif menu_name == 'test_predictions':
show_test_predict_plot = st.sidebar.checkbox('Test set forecast', value=True)
return show_test_predict_plot
elif menu_name == 'feature_target':
data_frequency = st.sidebar.selectbox('What is the FREQUENCY of your data? ', ['Select a frequency', 'Hourly', 'Daily', 'Monthly', 'Quarterly', 'Yearly'], 0)
# If the frequency do not select a frequency for the dataset, it will raise an error
if data_frequency == 'Select a frequency':
# Hiding traceback in order to only show the error message
sys.tracebacklimit = 0
raise ValueError('Please, select the FREQUENCY for your data')
# Show traceback error
sys.tracebacklimit = None
def main():
st.sidebar.header('📰 recnn by @awarebayes 👨🔧')
if st.sidebar.checkbox('Use cuda', torch.cuda.is_available()):
device = torch.device('cuda')
else:
device = torch.device('cpu')
st.sidebar.subheader('Choose a page to proceed:')
page = st.sidebar.selectbox("", ["🚀 Get Started", "📽 ️Recommend me a movie", "🔨 Test Recommendation",
"⛏️ Test Diversity", "🤖 Reinforce Top K"])
st.sidebar.markdown("""
### I need your help!
Currently, I am at my final year of high school, doing all this to get into a university.
I live in Russia and believe that I have no future here.
If you happened to know a prof/teacher/postdoc/anyone at your
university, please show them my CV: [link](https://drive.google.com/file/d/1jgM-SzEUbUjqgHzaajoUv4ENhC7-oaDT/view?usp=sharing).
def select_checkbox(param_name, defaults, **kwargs):
st.sidebar.subheader(param_name)
result = st.sidebar.checkbox("True", defaults, key=hash(param_name))
return result
max_value=min([2000, data.shape[0]]),
value=500,
step=10,
)
data2 = data[-section:]["Adj Close"].to_frame("Adj Close")
sma = st.sidebar.checkbox("SMA")
if sma:
period = st.sidebar.slider(
"SMA period", min_value=5, max_value=500, value=20, step=1
)
data[f"SMA {period}"] = data["Adj Close"].rolling(period).mean()
data2[f"SMA {period}"] = data[f"SMA {period}"].reindex(data2.index)
sma2 = st.sidebar.checkbox("SMA2")
if sma2:
period2 = st.sidebar.slider(
"SMA2 period", min_value=5, max_value=500, value=100, step=1
)
data[f"SMA2 {period2}"] = data["Adj Close"].rolling(period2).mean()
data2[f"SMA2 {period2}"] = data[f"SMA2 {period2}"].reindex(data2.index)
st.subheader("Chart")
st.line_chart(data2)
if st.sidebar.checkbox("View stadistic"):
st.subheader("Stadistic")
st.table(data2.describe())
if st.sidebar.checkbox("View quotes"):
st.subheader(f"{asset} historical data")
data.index.name = None
section = st.sidebar.slider('Number of quotes', min_value=30,
max_value=min([2000, data.shape[0]]),
value=500, step=10)
data2 = data[-section:]['Adj Close'].to_frame('Adj Close')
sma = st.sidebar.checkbox('SMA')
if sma:
period= st.sidebar.slider('SMA period', min_value=5, max_value=500,
value=20, step=1)
data[f'SMA {period}'] = data['Adj Close'].rolling(period ).mean()
data2[f'SMA {period}'] = data[f'SMA {period}'].reindex(data2.index)
sma2 = st.sidebar.checkbox('SMA2')
if sma2:
period2= st.sidebar.slider('SMA2 period', min_value=5, max_value=500,
value=100, step=1)
data[f'SMA2 {period2}'] = data['Adj Close'].rolling(period2).mean()
data2[f'SMA2 {period2}'] = data[f'SMA2 {period2}'].reindex(data2.index)
st.subheader('Chart')
st.line_chart(data2)
if st.sidebar.checkbox('View stadistic'):
st.subheader('Stadistic')
st.table(data2.describe())
if st.sidebar.checkbox('View quotes'):
st.subheader(f'{asset} historical data')
st.write(data2)