Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import streamlit as st
i1 = st.button("button 1")
st.write("value:", i1)
i2 = st.checkbox("reset button")
def sallery_predictor_component():
"""## Sallery Predictor Component
A user can input some of his developer features like years of experience and he will get a
prediction of his sallery
"""
st.markdown("## App 2: Salary Predictor For Techies")
experience = st.number_input("Years of Experience")
test_score = st.number_input("Aptitude Test score")
interview_score = st.number_input("Interview Score")
if st.button("Predict"):
model = get_pickle(MODEL_PKL_FILE)
features = [experience, test_score, interview_score]
final_features = [np.array(features)]
prediction = model.predict(final_features)
st.balloons()
st.success(f"Your Salary per anum is: Ghc {prediction[0]:.0f}")
w1 = st.checkbox("I am human", True)
st.write(w1)
if w1:
st.write("Agreed")
st.subheader("Slider")
w2 = st.slider("Age", 0.0, 100.0, (32.5, 72.5), 0.5)
st.write(w2)
st.subheader("Textarea")
w3 = st.text_area("Comments", "Streamlit is awesomeness!")
st.write(w3)
st.subheader("Button")
w4 = st.button("Click me")
st.write(w4)
if w4:
st.write("Hello, Interactive Streamlit!")
st.subheader("Radio")
options = ("female", "male")
w5 = st.radio("Gender", options, 1)
st.write(w5)
st.subheader("Text input")
w6 = st.text_input("Text input widget", "i iz input")
st.write(w6)
st.subheader("Selectbox")
options = ("first", "second")
if vector_size:
st.header("Vectors & Similarity")
st.code(nlp.meta["vectors"])
text1 = st.text_input("Text or word 1", "apple")
text2 = st.text_input("Text or word 2", "orange")
doc1 = process_text(spacy_model, text1)
doc2 = process_text(spacy_model, text2)
similarity = doc1.similarity(doc2)
if similarity > 0.5:
st.success(similarity)
else:
st.error(similarity)
st.header("Token attributes")
if st.button("Show token attributes"):
attrs = [
"idx",
"text",
"lemma_",
"pos_",
"tag_",
"dep_",
"head",
"ent_type_",
"ent_iob_",
"shape_",
"is_alpha",
"is_ascii",
"is_digit",
"is_punct",
"like_num",
+ To show a simple EDA of Iris using Streamlit framework.
"""
)
# Your code goes below
# Our Dataset
my_dataset = "iris.csv"
# Load Our Dataset
data = explore_data(my_dataset)
# Show Dataset
if st.checkbox("Preview DataFrame"):
if st.button("Head"):
st.write(data.head())
if st.button("Tail"):
st.write(data.tail())
else:
st.write(data.head(2))
# Show Entire Dataframe
if st.checkbox("Show All DataFrame"):
st.dataframe(data)
# Show All Column Names
if st.checkbox("Show All Column Name"):
st.text("Columns:")
st.write(data.columns)
# Show Dimensions and Shape of Dataset
data_dim = st.radio("What Dimension Do You Want to Show", ("Rows", "Columns"))
if data_dim == "Rows":
st.text("Showing Virginica Species")
st.image(load_image('imgs/iris_virginica.jpg'))
# Show Image or Hide Image with Checkbox
if st.checkbox("Show Image/Hide Image"):
my_image = load_image('iris_setosa.jpg')
enh = ImageEnhance.Contrast(my_image)
num = st.slider("Set Your Contrast Number",1.0,3.0)
img_width = st.slider("Set Image Width",300,500)
st.image(enh.enhance(num),width=img_width)
# About
if st.button("About App"):
st.subheader("Iris Dataset EDA App")
st.text("Built with Streamlit")
st.text("Thanks to the Streamlit Team Amazing Work")
if st.checkbox("By"):
st.text("Jesse E.Agbe(JCharis)")
st.text("Jesus Saves@JCharisTech")
"is_ascii",
"is_digit",
"is_punct",
"like_num",
]
data = [[str(getattr(token, attr)) for attr in attrs] for token in doc]
df = pd.DataFrame(data, columns=attrs)
st.dataframe(df)
st.header("JSON Doc")
if st.button("Show JSON Doc"):
st.json(doc.to_json())
st.header("JSON model meta")
if st.button("Show JSON model meta"):
st.json(nlp.meta)
chart = st.line_chart(last_rows)
for i in range(1, 101):
new_rows = last_rows[-1, :] + np.random.randn(5, 1).cumsum(axis=0)
status_text.text("%i%% Complete" % i)
chart.add_rows(new_rows)
progress_bar.progress(i)
last_rows = new_rows
time.sleep(0.05)
progress_bar.empty()
# Streamlit widgets automatically run the script from top to bottom. Since
# this button is not connected to any other logic, it just causes a plain
# rerun.
st.button("Re-run")
"ent_type_",
"ent_iob_",
"shape_",
"is_alpha",
"is_ascii",
"is_digit",
"is_punct",
"like_num",
]
data = [[str(getattr(token, attr)) for attr in attrs] for token in doc]
df = pd.DataFrame(data, columns=attrs)
st.dataframe(df)
st.header("JSON Doc")
if st.button("Show JSON Doc"):
st.json(doc.to_json())
st.header("JSON model meta")
if st.button("Show JSON model meta"):
st.json(nlp.meta)