Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
"Explore NBA roster turnover since\nthe 2003-04 season. **Roster turnover** is \ndefined as the "
"sum of the difference\nin total minutes played by each player\non a given team between any two "
"years."
)
st.sidebar.table(
pd.DataFrame.from_dict(
wins_turnover_corr, orient="index", columns=["correlation"]
).round(2)
)
# Data frame for the plot
fig = get_turnover_vs_wins_plot(roster_turnover, year, teams_colorscale)
st.plotly_chart(fig, width=1080, height=600)
# Show the roster DataFrame
st.header("Minutes Played Breakdown by Team")
selected_team = st.selectbox("Select a team", teams)
st.dataframe(
roster_turnover_pivot(player_minutes, team=selected_team, year=year), width=1080
)
st.text("* The numbers in the table are minutes played")
std = D.std(axis=1).mean()
return I, mean, std
def get_action(model_name, action_id):
gen_action = models[model_name].forward(state)
gen_action = gen_action[action_id].detach().cpu().numpy()
return gen_action
st.subheader('(Optional) Select the state are getting the recommendations for')
action_id = np.random.randint(0, state.size(0), 1)[0]
action_id_manual = st.checkbox('Manually set state index')
if action_id_manual:
action_id = st.slider("Choose state index:", min_value=0, max_value=state.size(0))
st.header('Metric')
dist = st.selectbox('Select distance', ['L2', 'IP', 'COS'])
ddpg_action = get_action('ddpg', action_id).reshape(1, -1)
td3_action = get_action('td3', action_id).reshape(1, -1)
topk = st.slider("TOP K items to recommend:", min_value=1, max_value=30, value=10)
ddpg_I, ddpg_mean, ddpg_std = get_err(ddpg_action, dist, topk, euc=True)
td3_I, td3_mean, td3_std = get_err(td3_action, dist, topk, euc=True)
# Mean Err
st.subheader('Mean error')
st.markdown("""
How close are we to the actual movie embedding?
The closer the better, although higher error may
image = Image.open(io.BytesIO(si.get_images()["image.png"]))
data.append((image, "PIL Image.open('image.png')"))
image = Image.open(io.BytesIO(si.get_images()["image.jpeg"]))
data.append((image, "PIL Image.open('image.jpeg')"))
data.append(
(Image.new("RGB", (200, 200), color="red"), "Image.new('RGB', color='red')")
)
images = []
captions = []
for i, c in data:
images.append(i)
captions.append(c)
st.image(images, caption=captions, format="png")
st.header("Bytes IO Image")
image = io.BytesIO(si.get_images()["image.png"])
st.image(image, caption=str(type(image)), format="png")
st.header("From a file")
st.image("/tmp/image.png", caption="/tmp/image.png", format="png")
st.header("From open")
st.image(open("/tmp/image.png", "rb").read(), caption="from read", format="png")
st.header("Numpy arrays")
image = Image.open(io.BytesIO(si.get_images()["image.png"]))
rgba = np.array(image)
data = []
# Full RGBA image
data.append((rgba, str(rgba.shape)))
]
df = pd.DataFrame(
np.random.randn(8, 4),
index=arrays,
columns=[
datetime(2012, 5, 1),
datetime(2012, 5, 2),
datetime(2012, 5, 3),
datetime(2012, 5, 4),
],
)
st.write(df, "...and its transpose:", df.T)
st.header("Visualizing data as charts")
st.write(
"Charts are just as simple, but they require us to introduce some "
"special functions first."
)
st.write("So assuming `data_frame` has been defined as...")
with st.echo():
chart_data = pd.DataFrame(
np.random.randn(20, 5), columns=["pv", "uv", "a", "b", "c"]
)
st.write("...you can easily draw the charts below:")
st.subheader("Example of line chart")
vector_size = nlp.meta.get("vectors", {}).get("width", 0)
if vector_size:
st.header("Vectors & Similarity")
st.code(nlp.meta["vectors"])
text1 = st.text_input("Text or word 1", "apple")
text2 = st.text_input("Text or word 2", "orange")
doc1 = process_text(spacy_model, text1)
doc2 = process_text(spacy_model, text2)
similarity = doc1.similarity(doc2)
if similarity > 0.5:
st.success(similarity)
else:
st.error(similarity)
st.header("Token attributes")
if st.button("Show token attributes"):
attrs = [
"idx",
"text",
"lemma_",
"pos_",
"tag_",
"dep_",
"head",
"ent_type_",
"ent_iob_",
"shape_",
"is_alpha",
"is_ascii",
"is_digit",
Process text with [spaCy](https://spacy.io) models and visualize named entities,
dependencies and more. Uses spaCy's built-in
[displaCy](http://spacy.io/usage/visualizers) visualizer under the hood.
"""
)
spacy_model = st.sidebar.selectbox("Model name", SPACY_MODEL_NAMES)
model_load_state = st.info(f"Loading model '{spacy_model}'...")
nlp = load_model(spacy_model)
model_load_state.empty()
text = st.text_area("Text to analyze", DEFAULT_TEXT)
doc = process_text(spacy_model, text)
if "parser" in nlp.pipe_names:
st.header("Dependency Parse & Part-of-speech tags")
st.sidebar.header("Dependency Parse")
split_sents = st.sidebar.checkbox("Split sentences", value=True)
collapse_punct = st.sidebar.checkbox("Collapse punctuation", value=True)
collapse_phrases = st.sidebar.checkbox("Collapse phrases")
compact = st.sidebar.checkbox("Compact mode")
options = {
"collapse_punct": collapse_punct,
"collapse_phrases": collapse_phrases,
"compact": compact,
}
docs = [span.as_doc() for span in doc.sents] if split_sents else [doc]
for sent in docs:
html = displacy.render(sent, options=options)
# Double newlines seem to mess with the rendering
html = html.replace("\n\n", "\n")
if split_sents and len(docs) > 1:
###
st.header("Matplotlib chart in Plotly")
import matplotlib.pyplot as plt
f = plt.figure()
arr = np.random.normal(1, 1, size=100)
plt.hist(arr, bins=20)
st.plotly_chart(f)
###
st.header("3D plot")
x, y, z = np.random.multivariate_normal(np.array([0, 0, 0]), np.eye(3), 400).transpose()
trace1 = go.Scatter3d(
x=x,
y=y,
z=z,
mode="markers",
marker=dict(
size=12,
color=z, # set color to an array/list of desired values
colorscale="Viridis", # choose a colorscale
opacity=0.8,
),
)
html = html.replace("\n", " ")
st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)
attrs = ["text", "label_", "start", "end", "start_char", "end_char"]
if "entity_linker" in nlp.pipe_names:
attrs.append("kb_id_")
data = [
[str(getattr(ent, attr)) for attr in attrs]
for ent in doc.ents
if ent.label_ in labels
]
df = pd.DataFrame(data, columns=attrs)
st.dataframe(df)
if "textcat" in nlp.pipe_names:
st.header("Text Classification")
st.markdown(f"> {text}")
df = pd.DataFrame(doc.cats.items(), columns=("Label", "Score"))
st.dataframe(df)
vector_size = nlp.meta.get("vectors", {}).get("width", 0)
if vector_size:
st.header("Vectors & Similarity")
st.code(nlp.meta["vectors"])
text1 = st.text_input("Text or word 1", "libel")
text2 = st.text_input("Text or word 2", "slander")
doc1 = process_text(spacy_model, text1)
doc2 = process_text(spacy_model, text2)
similarity = doc1.similarity(doc2)
if similarity > 0.5:
st.success(similarity)
"head",
"ent_type_",
"ent_iob_",
"shape_",
"is_alpha",
"is_ascii",
"is_digit",
"is_punct",
"like_num",
]
data = [[str(getattr(token, attr)) for attr in attrs] for token in doc]
df = pd.DataFrame(data, columns=attrs)
st.dataframe(df)
st.header("JSON Doc")
if st.button("Show JSON Doc"):
st.json(doc.to_json())
st.header("JSON model meta")
if st.button("Show JSON model meta"):
st.json(nlp.meta)
from utilities import DataParams
from utilities import ProcessedDataParams
from oversample import Oversampler
from model import nn_classifier
from train_test import make_training_and_test_sets
from train_test import normalise
from train_test import make_results_df
from train_test import train_predict
from plot_results import probability_density_functions
################################################################################
################################################################################
################################################################################
st.title('debias-ml: model testing')
st.header('1 Processed Data Ingestion''')
st.write('')
params = DataParams()
filename = params.filename
sensitive_features = params.sensitive_features
target_feature = params.target_feature
pos_target = params.pos_target
n_train = params.n_train
data_df = pd.read_csv('../data/processed/'+filename)
st.write('Data read successfully!')
params = ProcessedDataParams()
bias_cols = params.bias_cols
target_col = params.target_col
feature_cols = list(data_df.columns)