Vulnerabilities

99 via 208 paths

Dependencies

354

Source

GitHub

Commit

d543619e

Find, fix and prevent vulnerabilities in your code.

Severity
  • 4
  • 38
  • 47
  • 10
Status
  • 99
  • 0
  • 0

critical severity

Prototype Pollution

  • Vulnerable module: handlebars
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 handlebars@2.0.0
    Remediation: Upgrade to express-hbs@0.8.0.

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Prototype Pollution. It is possible to add or modify properties to the Object prototype through a malicious template. This may allow attackers to crash the application or execute Arbitrary Code in specific conditions.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade handlebars to version 3.0.8, 4.5.3 or higher.

References

critical severity

SQL Injection

  • Vulnerable module: knex
  • Introduced through: knex@0.7.3

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3
    Remediation: Upgrade to knex@0.19.5.

Overview

knex is a query builder for PostgreSQL, MySQL and SQLite3

Affected versions of this package are vulnerable to SQL Injection. None

Remediation

Upgrade knex to version 0.19.5 or higher.

References

critical severity

Predictable Value Range from Previous Values

  • Vulnerable module: form-data
  • Introduced through: request@2.51.0 and sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 form-data@0.2.0
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 request@2.81.0 form-data@2.1.4

Overview

Affected versions of this package are vulnerable to Predictable Value Range from Previous Values via the boundary value, which uses Math.random(). An attacker can manipulate HTTP request boundaries by exploiting predictable values, potentially leading to HTTP parameter pollution.

Remediation

Upgrade form-data to version 2.5.4, 3.0.4, 4.0.4 or higher.

References

critical severity

Authentication Bypass

  • Vulnerable module: hawk
  • Introduced through: request@2.51.0 and sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 hawk@1.1.1
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 hawk@3.1.3
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 request@2.81.0 hawk@3.1.3

Overview

hawk is a library for the HTTP Hawk Authentication Scheme.

Affected versions of this package are vulnerable to Authentication Bypass. The incoming (client supplied) hash of the payload is trusted by the server and not verified before the signature is calculated.

A malicious actor in the middle can alter the payload and the server side will not identify the modification occurred because it simply uses the client provided value instead of verify the hash provided against the modified payload.

According to the maintainers this issue is to be considered out of scope as "payload hash validation is optional and up to developer to implement".

Remediation

There is no fixed version for hawk.

References

high severity
new

Allocation of Resources Without Limits or Throttling

  • Vulnerable module: qs
  • Introduced through: body-parser@1.10.0, express@4.10.6 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 body-parser@1.10.0 qs@2.3.3
    Remediation: Upgrade to body-parser@1.20.4.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 qs@2.3.3
    Remediation: Upgrade to express@4.22.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 qs@2.3.3
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 request@2.81.0 qs@6.4.1

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Allocation of Resources Without Limits or Throttling via improper enforcement of the arrayLimit option in bracket notation parsing. An attacker can exhaust server memory and cause application unavailability by submitting a large number of bracket notation parameters - like a[]=1&a[]=2 - in a single HTTP request.

PoC


const qs = require('qs');
const attack = 'a[]=' + Array(10000).fill('x').join('&a[]=');
const result = qs.parse(attack, { arrayLimit: 100 });
console.log(result.a.length);  // Output: 10000 (should be max 100)

Remediation

Upgrade qs to version 6.14.1 or higher.

References

high severity

Incomplete Filtering of One or More Instances of Special Elements

  • Vulnerable module: validator
  • Introduced through: validator@3.26.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 validator@3.26.0
    Remediation: Upgrade to validator@13.15.22.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Incomplete Filtering of One or More Instances of Special Elements in the isLength() function that does not take into account Unicode variation selectors (\uFE0F, \uFE0E) appearing in a sequence which lead to improper string length calculation. This can lead to an application using isLength for input validation accepting strings significantly longer than intended, resulting in issues like data truncation in databases, buffer overflows in other system components, or denial-of-service.

PoC

Input;

const validator = require('validator');

console.log(`Is "test" (String.length: ${'test'.length}) length less than or equal to 3? ${validator.isLength('test', { max: 3 })}`);
console.log(`Is "test" (String.length: ${'test'.length}) length less than or equal to 4? ${validator.isLength('test', { max: 4 })}`);
console.log(`Is "test\uFE0F\uFE0F\uFE0F\uFE0F" (String.length: ${'test\uFE0F\uFE0F\uFE0F\uFE0F'.length}) length less than or equal to 4? ${validator.isLength('test\uFE0F\uFE0F\uFE0F', { max: 4 })}`);

Output:

Is "test" (String.length: 4) length less than or equal to 3? false
Is "test" (String.length: 4) length less than or equal to 4? true
Is "test️️️️" (String.length: 8) length less than or equal to 4? true

Remediation

Upgrade validator to version 13.15.22 or higher.

References

high severity

SQL Injection

  • Vulnerable module: knex
  • Introduced through: knex@0.7.3

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3
    Remediation: Upgrade to knex@2.4.0.

Overview

knex is a query builder for PostgreSQL, MySQL and SQLite3

Affected versions of this package are vulnerable to SQL Injection due to missing escape of field objects, which allows ignoring the WHERE clause of a SQL query.

Note: Exploiting this vulnerability is possible when using MySQL DB.

PoC

const knex = require('knex')({
    client: 'mysql2',
    connection: {
        host: '127.0.0.1',
        user: 'root',
        password: 'supersecurepassword',
        database: 'poc',
        charset: 'utf8'
    }
})

knex.schema.hasTable('users').then((exists) => {
    if (!exists) {
        knex.schema.createTable('users', (table) => {
            table.increments('id').primary()
            table.string('name').notNullable()
            table.string('secret').notNullable()
        }).then()
        knex('users').insert({
            name: "admin",
            secret: "you should not be able to return this!"
        }).then()
        knex('users').insert({
            name: "guest",
            secret: "hello world"
        }).then()
    }
})

attackerControlled = {
    "name": "admin"
}

knex('users')
    .select()
    .where({secret: attackerControlled})
    .then((userSecret) => console.log(userSecret))

Remediation

Upgrade knex to version 2.4.0 or higher.

References

high severity

Command Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1
    Remediation: Upgrade to nodemailer@6.4.16.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Command Injection. Use of crafted recipient email addresses may result in arbitrary command flag injection in sendmail transport for sending mails.

PoC

-bi@example.com (-bi Initialize the alias database.)
-d0.1a@example.com (The option -d0.1 prints the version of sendmail and the options it was compiled with.)
-Dfilename@example.com (Debug output ffile)

Remediation

Upgrade nodemailer to version 6.4.16 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar@2.2.2
    Remediation: Upgrade to sqlite3@4.0.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar-pack@3.4.1 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic was insufficient when extracting tar files that contained both a directory and a symlink with the same name as the directory, where the symlink and directory names in the archive entry used backslashes as a path separator on posix systems. The cache checking logic used both \ and / characters as path separators. However, \ is a valid filename character on posix systems.

By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location. This can lead to extracting arbitrary files into that location, thus allowing arbitrary file creation and overwrite.

Additionally, a similar confusion could arise on case-insensitive filesystems. If a tar archive contained a directory at FOO, followed by a symbolic link named foo, then on case-insensitive file systems, the creation of the symbolic link would remove the directory from the filesystem, but not from the internal directory cache, as it would not be treated as a cache hit. A subsequent file entry within the FOO directory would then be placed in the target of the symbolic link, thinking that the directory had already been created.

Remediation

Upgrade tar to version 6.1.7, 5.0.8, 4.4.16 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar@2.2.2
    Remediation: Upgrade to sqlite3@4.0.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar-pack@3.4.1 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain two directories and a symlink with names containing unicode values that normalized to the same value. Additionally, on Windows systems, long path portions would resolve to the same file system entities as their 8.3 "short path" counterparts. A specially crafted tar archive can include directories with two forms of the path that resolve to the same file system entity, followed by a symbolic link with a name in the first form, lastly followed by a file using the second form. This leads to bypassing node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and extracting arbitrary files into that location.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Arbitrary File Write

  • Vulnerable module: tar
  • Introduced through: sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar@2.2.2
    Remediation: Upgrade to sqlite3@4.0.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar-pack@3.4.1 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Write. node-tar aims to guarantee that any file whose location would be outside of the extraction target directory is not extracted. This is, in part, accomplished by sanitizing absolute paths of entries within the archive, skipping archive entries that contain .. path portions, and resolving the sanitized paths against the extraction target directory.

This logic is insufficient on Windows systems when extracting tar files that contain a path that is not an absolute path, but specify a drive letter different from the extraction target, such as C:some\path. If the drive letter does not match the extraction target, for example D:\extraction\dir, then the result of path.resolve(extractionDirectory, entryPath) resolves against the current working directory on the C: drive, rather than the extraction target directory.

Additionally, a .. portion of the path can occur immediately after the drive letter, such as C:../foo, and is not properly sanitized by the logic that checks for .. within the normalized and split portions of the path.

Note: This only affects users of node-tar on Windows systems.

Remediation

Upgrade tar to version 6.1.9, 5.0.10, 4.4.18 or higher.

References

high severity

Improper minification of non-boolean comparisons

  • Vulnerable module: uglify-js
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 handlebars@2.0.0 uglify-js@2.3.6
    Remediation: Upgrade to express-hbs@0.8.0.

Overview

uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.

Tom MacWright discovered that UglifyJS versions 2.4.23 and earlier are affected by a vulnerability which allows a specially crafted Javascript file to have altered functionality after minification. This bug was demonstrated by Yan to allow potentially malicious code to be hidden within secure code, activated by minification.

Details

In Boolean algebra, DeMorgan's laws describe the relationships between conjunctions (&&), disjunctions (||) and negations (!). In Javascript form, they state that:

 !(a && b) === (!a) || (!b)
 !(a || b) === (!a) && (!b)

The law does not hold true when one of the values is not a boolean however.

Vulnerable versions of UglifyJS do not account for this restriction, and erroneously apply the laws to a statement if it can be reduced in length by it.

Consider this authentication function:

function isTokenValid(user) {
    var timeLeft =
        !!config && // config object exists
        !!user.token && // user object has a token
        !user.token.invalidated && // token is not explicitly invalidated
        !config.uninitialized && // config is initialized
        !config.ignoreTimestamps && // don't ignore timestamps
        getTimeLeft(user.token.expiry); // > 0 if expiration is in the future

    // The token must not be expired
    return timeLeft > 0;
}

function getTimeLeft(expiry) {
  return expiry - getSystemTime();
}

When minified with a vulnerable version of UglifyJS, it will produce the following insecure output, where a token will never expire:

( Formatted for readability )

function isTokenValid(user) {
    var timeLeft = !(                       // negation
        !config                             // config object does not exist
        || !user.token                      // user object does not have a token
        || user.token.invalidated           // token is explicitly invalidated
        || config.uninitialized             // config isn't initialized
        || config.ignoreTimestamps          // ignore timestamps
        || !getTimeLeft(user.token.expiry)  // > 0 if expiration is in the future
    );
    return timeLeft > 0
}

function getTimeLeft(expiry) {
    return expiry - getSystemTime()
}

Remediation

Upgrade UglifyJS to version 2.4.24 or higher.

References

high severity

Asymmetric Resource Consumption (Amplification)

  • Vulnerable module: body-parser
  • Introduced through: body-parser@1.10.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 body-parser@1.10.0
    Remediation: Upgrade to body-parser@1.20.3.

Overview

Affected versions of this package are vulnerable to Asymmetric Resource Consumption (Amplification) via the extendedparser and urlencoded functions when the URL encoding process is enabled. An attacker can flood the server with a large number of specially crafted requests.

Remediation

Upgrade body-parser to version 1.20.3 or higher.

References

high severity

Uncontrolled Recursion

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1
    Remediation: Upgrade to nodemailer@7.0.11.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Uncontrolled Recursion in the addressparser function. An attacker can cause the process to terminate immediately by sending an email address header containing deeply nested groups, separated by many :s.

Remediation

Upgrade nodemailer to version 7.0.11 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar@2.2.2
    Remediation: Upgrade to sqlite3@4.0.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar-pack@3.4.1 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient symlink protection. node-tar aims to guarantee that any file whose location would be modified by a symbolic link is not extracted. This is, in part, achieved by ensuring that extracted directories are not symlinks. Additionally, in order to prevent unnecessary stat calls to determine whether a given path is a directory, paths are cached when directories are created.

This logic is insufficient when extracting tar files that contain both a directory and a symlink with the same name as the directory. This order of operations results in the directory being created and added to the node-tar directory cache. When a directory is present in the directory cache, subsequent calls to mkdir for that directory are skipped. However, this is also where node-tar checks for symlinks occur. By first creating a directory, and then replacing that directory with a symlink, it is possible to bypass node-tar symlink checks on directories, essentially allowing an untrusted tar file to symlink into an arbitrary location and subsequently extracting arbitrary files into that location.

Remediation

Upgrade tar to version 3.2.3, 4.4.15, 5.0.7, 6.1.2 or higher.

References

high severity

Arbitrary File Overwrite

  • Vulnerable module: tar
  • Introduced through: sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar@2.2.2
    Remediation: Upgrade to sqlite3@4.0.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar-pack@3.4.1 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Arbitrary File Overwrite. This is due to insufficient absolute path sanitization.

node-tar aims to prevent extraction of absolute file paths by turning absolute paths into relative paths when the preservePaths flag is not set to true. This is achieved by stripping the absolute path root from any absolute file paths contained in a tar file. For example, the path /home/user/.bashrc would turn into home/user/.bashrc.

This logic is insufficient when file paths contain repeated path roots such as ////home/user/.bashrc. node-tar only strips a single path root from such paths. When given an absolute file path with repeating path roots, the resulting path (e.g. ///home/user/.bashrc) still resolves to an absolute path.

Remediation

Upgrade tar to version 3.2.2, 4.4.14, 5.0.6, 6.1.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: ajv
  • Introduced through: sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 request@2.81.0 har-validator@4.2.1 ajv@4.11.8
    Remediation: Upgrade to sqlite3@4.0.0.

Overview

ajv is an Another JSON Schema Validator

Affected versions of this package are vulnerable to Prototype Pollution. A carefully crafted JSON schema could be provided that allows execution of other code by prototype pollution. (While untrusted schemas are recommended against, the worst case of an untrusted schema should be a denial of service, not execution of code.)

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade ajv to version 6.12.3 or higher.

References

high severity

Arbitrary Code Execution

  • Vulnerable module: handlebars
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 handlebars@2.0.0
    Remediation: Upgrade to express-hbs@0.8.0.

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Arbitrary Code Execution. The package's lookup helper doesn't validate templates correctly, allowing attackers to submit templates that execute arbitrary JavaScript in the system.

PoC

    {{#with split as |a|}}
        {{pop (push "alert('Vulnerable Handlebars JS');")}}
        {{#with (concat (lookup join (slice 0 1)))}}
            {{#each (slice 2 3)}}
                {{#with (apply 0 a)}}
                    {{.}}
                {{/with}}
            {{/each}}
        {{/with}}
    {{/with}}
{{/with}}

Remediation

Upgrade handlebars to version 3.0.8, 4.5.3 or higher.

References

high severity

Uninitialized Memory Exposure

  • Vulnerable module: bl
  • Introduced through: request@2.51.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 bl@0.9.5
    Remediation: Upgrade to request@2.76.0.

Overview

bl is a library that allows you to collect buffers and access with a standard readable buffer interface.

Affected versions of this package are vulnerable to Uninitialized Memory Exposure. If user input ends up in consume() argument and can become negative, BufferList state can be corrupted, tricking it into exposing uninitialized memory via regular .slice() calls.

PoC by chalker

const { BufferList } = require('bl')
const secret = require('crypto').randomBytes(256)
for (let i = 0; i < 1e6; i++) {
  const clone = Buffer.from(secret)
  const bl = new BufferList()
  bl.append(Buffer.from('a'))
  bl.consume(-1024)
  const buf = bl.slice(1)
  if (buf.indexOf(clone) !== -1) {
    console.error(`Match (at ${i})`, buf)
  }
}

Remediation

Upgrade bl to version 2.2.1, 3.0.1, 4.0.3, 1.2.3 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: dicer
  • Introduced through: busboy@0.2.9

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 busboy@0.2.9 dicer@0.2.3

Overview

Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious attacker can send a modified form to server, and crash the nodejs service. An attacker could sent the payload again and again so that the service continuously crashes.

PoC

await fetch('http://127.0.0.1:8000', { method: 'POST', headers: { ['content-type']: 'multipart/form-data; boundary=----WebKitFormBoundaryoo6vortfDzBsDiro', ['content-length']: '145', connection: 'keep-alive', }, body: '------WebKitFormBoundaryoo6vortfDzBsDiro\r\n Content-Disposition: form-data; name="bildbeschreibung"\r\n\r\n\r\n------WebKitFormBoundaryoo6vortfDzBsDiro--' });

Remediation

There is no fixed version for dicer.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: fresh
  • Introduced through: express@4.10.6

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 fresh@0.2.4
    Remediation: Upgrade to express@4.15.5.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 send@0.10.1 fresh@0.2.4
    Remediation: Upgrade to express@4.15.5.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 serve-static@1.7.2 send@0.10.1 fresh@0.2.4
    Remediation: Upgrade to express@4.15.5.

Overview

fresh is HTTP response freshness testing.

Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (/ *, */) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade fresh to version 0.5.2 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: html-to-text
  • Introduced through: html-to-text@1.0.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 html-to-text@1.0.0
    Remediation: Upgrade to html-to-text@6.0.0.

Overview

html-to-text is an Advanced html to plain text converter

Affected versions of this package are vulnerable to Denial of Service (DoS). The application may crash when the parsed HTML is either very deep or has a big amount of DOM elements.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade html-to-text to version 6.0.0 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: bookshelf@0.7.9, cheerio@0.18.0 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 bookshelf@0.7.9 lodash@2.4.2
    Remediation: Upgrade to bookshelf@0.10.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 cheerio@0.18.0 lodash@2.4.2
    Remediation: Upgrade to cheerio@0.20.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.11.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 findup-sync@0.1.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.8.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 lodash@2.4.1
    Remediation: Upgrade to lodash@4.17.17.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution through the zipObjectDeep function due to improper user input sanitization in the baseZipObject function.

PoC

lodash.zipobjectdeep:

const zipObjectDeep = require("lodash.zipobjectdeep");

let emptyObject = {};


console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined

zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function

console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true

lodash:

const test = require("lodash");

let emptyObject = {};


console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined

test.zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function

console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.17 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: minimatch
  • Introduced through: express-hbs@0.7.11, glob@4.3.2 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 readdirp@0.3.3 minimatch@0.2.14
    Remediation: Upgrade to express-hbs@1.0.2.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 glob@4.3.2 minimatch@2.0.10
    Remediation: Upgrade to glob@5.0.15.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 findup-sync@0.1.3 glob@3.2.11 minimatch@0.3.0
    Remediation: Upgrade to knex@0.11.0.

Overview

minimatch is a minimal matching utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via complicated and illegal regexes.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade minimatch to version 3.0.2 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: minimatch
  • Introduced through: express-hbs@0.7.11, glob@4.3.2 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 readdirp@0.3.3 minimatch@0.2.14
    Remediation: Upgrade to express-hbs@1.0.2.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 glob@4.3.2 minimatch@2.0.10
    Remediation: Upgrade to glob@5.0.15.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 findup-sync@0.1.3 glob@3.2.11 minimatch@0.3.0
    Remediation: Upgrade to knex@0.11.0.

Overview

minimatch is a minimal matching utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS).

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade minimatch to version 3.0.2 or higher.

References

high severity

Directory Traversal

  • Vulnerable module: moment
  • Introduced through: moment@2.8.3

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 moment@2.8.3
    Remediation: Upgrade to moment@2.29.2.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of this package are vulnerable to Directory Traversal when a user provides a locale string which is directly used to switch moment locale.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade moment to version 2.29.2 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: negotiator
  • Introduced through: compression@1.2.2 and express@4.10.6

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 compression@1.2.2 accepts@1.1.4 negotiator@0.4.9
    Remediation: Upgrade to compression@1.6.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 accepts@1.1.4 negotiator@0.4.9
    Remediation: Upgrade to express@4.14.0.

Overview

negotiator is an HTTP content negotiator for Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when parsing Accept-Language http header.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade negotiator to version 0.6.1 or higher.

References

high severity

Prototype Override Protection Bypass

  • Vulnerable module: qs
  • Introduced through: body-parser@1.10.0, express@4.10.6 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 body-parser@1.10.0 qs@2.3.3
    Remediation: Upgrade to body-parser@1.17.1.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 qs@2.3.3
    Remediation: Upgrade to express@4.15.2.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 qs@2.3.3
    Remediation: Upgrade to request@2.68.0.

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Prototype Override Protection Bypass. By default qs protects against attacks that attempt to overwrite an object's existing prototype properties, such as toString(), hasOwnProperty(),etc.

From qs documentation:

By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use plainObjects as mentioned above, or set allowPrototypes to true which will allow user input to overwrite those properties. WARNING It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten. Always be careful with this option.

Overwriting these properties can impact application logic, potentially allowing attackers to work around security controls, modify data, make the application unstable and more.

In versions of the package affected by this vulnerability, it is possible to circumvent this protection and overwrite prototype properties and functions by prefixing the name of the parameter with [ or ]. e.g. qs.parse("]=toString") will return {toString = true}, as a result, calling toString() on the object will throw an exception.

Example:

qs.parse('toString=foo', { allowPrototypes: false })
// {}

qs.parse("]=toString", { allowPrototypes: false })
// {toString = true} <== prototype overwritten

For more information, you can check out our blog.

Disclosure Timeline

  • February 13th, 2017 - Reported the issue to package owner.
  • February 13th, 2017 - Issue acknowledged by package owner.
  • February 16th, 2017 - Partial fix released in versions 6.0.3, 6.1.1, 6.2.2, 6.3.1.
  • March 6th, 2017 - Final fix released in versions 6.4.0,6.3.2, 6.2.3, 6.1.2 and 6.0.4

Remediation

Upgrade qs to version 6.0.4, 6.1.2, 6.2.3, 6.3.2 or higher.

References

high severity

Prototype Poisoning

  • Vulnerable module: qs
  • Introduced through: body-parser@1.10.0, express@4.10.6 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 body-parser@1.10.0 qs@2.3.3
    Remediation: Upgrade to body-parser@1.19.2.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 qs@2.3.3
    Remediation: Upgrade to express@4.17.3.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 qs@2.3.3
    Remediation: Upgrade to request@2.73.0.

Overview

qs is a querystring parser that supports nesting and arrays, with a depth limit.

Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.

Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade qs to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: semver
  • Introduced through: bookshelf@0.7.9 and semver@4.1.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 bookshelf@0.7.9 semver@4.3.6
    Remediation: Upgrade to bookshelf@0.9.1.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 semver@4.1.0
    Remediation: Upgrade to semver@5.7.2.

Overview

semver is a semantic version parser used by npm.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.

PoC


const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]

console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})

const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade semver to version 5.7.2, 6.3.1, 7.5.2 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: sqlite3
  • Introduced through: sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4
    Remediation: Upgrade to sqlite3@5.0.3.

Overview

Affected versions of this package are vulnerable to Denial of Service (DoS) which will invoke the toString function of the passed parameter. If passed an invalid Function object it will throw and crash the V8 engine.

PoC

let sqlite3 = require('sqlite3').verbose(); 
let db = new sqlite3.Database(':memory:'); 
db.serialize(function() { 
  db.run("CREATE TABLE lorem (info TEXT)"); 
  db.run("INSERT INTO lorem VALUES (?)", [{toString: 23}]);  
});

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade sqlite3 to version 5.0.3 or higher.

References

high severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: hawk
  • Introduced through: request@2.51.0 and sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 hawk@1.1.1
    Remediation: Upgrade to request@2.87.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 hawk@3.1.3
    Remediation: Upgrade to sqlite3@5.0.3.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 request@2.81.0 hawk@3.1.3
    Remediation: Upgrade to sqlite3@4.0.0.

Overview

hawk is a library for the HTTP Hawk Authentication Scheme.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in header parsing where each added character in the attacker's input increases the computation time exponentially.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade hawk to version 9.0.1 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: aws-sdk
  • Introduced through: nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1 aws-sdk@2.0.5
    Remediation: Upgrade to nodemailer@1.0.0.

Overview

Affected versions of this package are vulnerable to Prototype Pollution. If an attacker submits a malicious INI file to an application that parses it with loadSharedConfigFiles , they will pollute the prototype on the application. This can be exploited further depending on the context.

PoC by Eugene Lim:

payload.toml:

[__proto__]
polluted = "polluted"

poc.js:

var fs = require('fs')
var sharedIniFileLoader = require('@aws-sdk/shared-ini-file-loader')

async function main() {
var parsed = await sharedIniFileLoader.loadSharedConfigFiles({ filepath: './payload.toml' })
console.log(parsed)
console.log(parsed.__proto__)
console.log({}.__proto__)
console.log(polluted)
}

main()
> node poc.js
{
configFile: { default: { region: 'ap-southeast-1' } },
credentialsFile: {}
}
{ polluted: '"polluted"' }
{ polluted: '"polluted"' }
"polluted"

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade aws-sdk to version 2.814.0 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: extend
  • Introduced through: knex@0.7.3

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 extend@1.3.0
    Remediation: Upgrade to knex@0.8.0.

Overview

extend is a port of the classic extend() method from jQuery.

Affected versions of this package are vulnerable to Prototype Pollution. Utilities function can be tricked into modifying the prototype of "Object" when the attacker control part of the structure passed to these function. This can let an attacker add or modify existing property that will exist on all object.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade extend to version 2.0.2, 3.0.2 or higher.

References

high severity

Improper Handling of Extra Parameters

  • Vulnerable module: follow-redirects
  • Introduced through: nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1 mailcomposer@0.2.12 follow-redirects@0.0.3
    Remediation: Upgrade to nodemailer@1.0.0.

Overview

Affected versions of this package are vulnerable to Improper Handling of Extra Parameters due to the improper handling of URLs by the url.parse() function. When new URL() throws an error, it can be manipulated to misinterpret the hostname. An attacker could exploit this weakness to redirect traffic to a malicious site, potentially leading to information disclosure, phishing attacks, or other security breaches.

PoC

# Case 1 : Bypassing localhost restriction
let url = 'http://[localhost]/admin';
try{
    new URL(url); // ERROR : Invalid URL
}catch{
    url.parse(url); // -> http://localhost/admin
}

# Case 2 : Bypassing domain restriction
let url = 'http://attacker.domain*.allowed.domain:a';
try{
    new URL(url); // ERROR : Invalid URL
}catch{
    url.parse(url); // -> http://attacker.domain/*.allowed.domain:a
}

Remediation

Upgrade follow-redirects to version 1.15.4 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: handlebars
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 handlebars@2.0.0
    Remediation: Upgrade to express-hbs@0.8.0.

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Prototype Pollution. Templates may alter an Objects' prototype, thus allowing an attacker to execute arbitrary code on the server.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade handlebars to version 3.0.7, 4.0.13, 4.1.2 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: handlebars
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 handlebars@2.0.0
    Remediation: Upgrade to express-hbs@0.8.0.

Overview

handlebars is a extension to the Mustache templating language.

Affected versions of this package are vulnerable to Prototype Pollution. Templates may alter an Object's __proto__ and __defineGetter__ properties, which may allow an attacker to execute arbitrary code on the server through crafted payloads.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade handlebars to version 4.3.0, 3.0.8 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: bookshelf@0.7.9, cheerio@0.18.0 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 bookshelf@0.7.9 lodash@2.4.2
    Remediation: Upgrade to bookshelf@0.10.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 cheerio@0.18.0 lodash@2.4.2
    Remediation: Upgrade to cheerio@0.20.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.11.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 findup-sync@0.1.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.8.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 lodash@2.4.1
    Remediation: Upgrade to lodash@4.17.12.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The function defaultsDeep could be tricked into adding or modifying properties of Object.prototype using a constructor payload.

PoC by Snyk

const mergeFn = require('lodash').defaultsDeep;
const payload = '{"constructor": {"prototype": {"a0": true}}}'

function check() {
    mergeFn({}, JSON.parse(payload));
    if (({})[`a0`] === true) {
        console.log(`Vulnerable to Prototype Pollution via ${payload}`);
    }
  }

check();

For more information, check out our blog post

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.12 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: bookshelf@0.7.9, cheerio@0.18.0 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 bookshelf@0.7.9 lodash@2.4.2
    Remediation: Upgrade to bookshelf@0.10.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 cheerio@0.18.0 lodash@2.4.2
    Remediation: Upgrade to cheerio@0.20.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.11.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 findup-sync@0.1.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.8.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 lodash@2.4.1
    Remediation: Upgrade to lodash@4.17.17.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution via the set and setwith functions due to improper user input sanitization.

PoC

lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.17 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: bookshelf@0.7.9, cheerio@0.18.0 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 bookshelf@0.7.9 lodash@2.4.2
    Remediation: Upgrade to bookshelf@0.10.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 cheerio@0.18.0 lodash@2.4.2
    Remediation: Upgrade to cheerio@0.20.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.11.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 findup-sync@0.1.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.8.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 lodash@2.4.1
    Remediation: Upgrade to lodash@4.17.11.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The functions merge, mergeWith, and defaultsDeep could be tricked into adding or modifying properties of Object.prototype. This is due to an incomplete fix to CVE-2018-3721.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.11 or higher.

References

high severity

Code Injection

  • Vulnerable module: lodash
  • Introduced through: bookshelf@0.7.9, cheerio@0.18.0 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 bookshelf@0.7.9 lodash@2.4.2
    Remediation: Upgrade to bookshelf@0.10.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 cheerio@0.18.0 lodash@2.4.2
    Remediation: Upgrade to cheerio@0.20.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.11.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 findup-sync@0.1.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.8.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 lodash@2.4.1
    Remediation: Upgrade to lodash@4.17.21.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Code Injection via template.

PoC

var _ = require('lodash');

_.template('', { variable: '){console.log(process.env)}; with(obj' })()

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

high severity

Remote Code Execution (RCE)

  • Vulnerable module: handlebars
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 handlebars@2.0.0
    Remediation: Upgrade to express-hbs@1.0.0.

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Remote Code Execution (RCE) when selecting certain compiling options to compile templates coming from an untrusted source.

POC

<script src="https://cdn.jsdelivr.net/npm/handlebars@latest/dist/handlebars.js"></script> 
<script> 
// compile the template 
var s = ` 
{{#with (__lookupGetter__ "__proto__")}} 
{{#with (./constructor.getOwnPropertyDescriptor . "valueOf")}} 
{{#with ../constructor.prototype}} 
{{../../constructor.defineProperty . "hasOwnProperty" ..}} 
{{/with}} 
{{/with}} 
{{/with}} 
{{#with "constructor"}} 
{{#with split}} 
{{pop (push "alert('Vulnerable Handlebars JS when compiling in strict mode');")}} 
{{#with .}} 
{{#with (concat (lookup join (slice 0 1)))}} 
{{#each (slice 2 3)}} 
{{#with (apply 0 ../..)}} 
{{.}} 
{{/with}} 
{{/each}} 
{{/with}} 
{{/with}} 
{{/with}} 
{{/with}} 
`;
var template = Handlebars.compile(s, { 
strict: true 
}); 
// execute the compiled template and print the output to the console console.log(template({})); 
</script>

Remediation

Upgrade handlebars to version 4.7.7 or higher.

References

medium severity

Interpretation Conflict

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1
    Remediation: Upgrade to nodemailer@7.0.7.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Interpretation Conflict due to improper handling of quoted local-parts containing @. An attacker can cause emails to be sent to unintended external recipients or bypass domain-based access controls by crafting specially formatted email addresses with quoted local-parts containing the @ character.

Remediation

Upgrade nodemailer to version 7.0.7 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: path-to-regexp
  • Introduced through: express@4.10.6

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 path-to-regexp@0.1.3
    Remediation: Upgrade to express@4.20.0.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, which will produce the regular expression /^\/([^\/]+?)-([^\/]+?)\/?$/, if two parameters within a single segment are separated by a character other than a / or .. Poor performance will block the event loop and can lead to a DoS.

Note: While the 8.0.0 release has completely eliminated the vulnerable functionality, prior versions that have received the patch to mitigate backtracking may still be vulnerable if custom regular expressions are used. So it is strongly recommended for regular expression input to be controlled to avoid malicious performance degradation in those versions. This behavior is enforced as of version 7.1.0 via the strict option, which returns an error if a dangerous regular expression is detected.

Workaround

This vulnerability can be avoided by using a custom regular expression for parameters after the first in a segment, which excludes - and /.

PoC

/a${'-a'.repeat(8_000)}/a

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade path-to-regexp to version 0.1.10, 1.9.0, 3.3.0, 6.3.0, 8.0.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: path-to-regexp
  • Introduced through: express@4.10.6

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 path-to-regexp@0.1.3
    Remediation: Upgrade to express@4.21.2.

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, when the separator is not . (e.g. no /:a-:b). Poor performance will block the event loop and can lead to a DoS.

Note:

This issue is caused due to an incomplete fix for CVE-2024-45296.

Workarounds

This can be mitigated by avoiding using two parameters within a single path segment, when the separator is not . (e.g. no /:a-:b). Alternatively, the regex used for both parameters can be defined to ensure they do not overlap to allow backtracking.

PoC

/a${'-a'.repeat(8_000)}/a

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade path-to-regexp to version 0.1.12 or higher.

References

medium severity

Arbitrary Code Injection

  • Vulnerable module: morgan
  • Introduced through: morgan@1.5.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 morgan@1.5.0
    Remediation: Upgrade to morgan@1.9.1.

Overview

morgan is a HTTP request logger middleware for node.js.

Affected versions of this package are vulnerable to Arbitrary Code Injection. An attacker could use the format parameter to inject arbitrary commands.

Remediation

Upgrade morgan to version 1.9.1 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: follow-redirects
  • Introduced through: nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1 mailcomposer@0.2.12 follow-redirects@0.0.3
    Remediation: Upgrade to nodemailer@1.0.0.

Overview

Affected versions of this package are vulnerable to Information Exposure due to the handling of the Proxy-Authorization header across hosts. When using a dependent library, it only clears the authorization header during cross-domain redirects but allows the proxy-authentication header, which contains credentials, to persist. This behavior may lead to the unintended leakage of credentials if an attacker can trigger a cross-domain redirect and capture the persistent proxy-authentication header.

PoC

const axios = require('axios');

axios.get('http://127.0.0.1:10081/',{
headers: {
'AuThorization': 'Rear Test',
'ProXy-AuthoriZation': 'Rear Test',
'coOkie': 't=1'
}
}).then(function (response) {
console.log(response);
})

Remediation

Upgrade follow-redirects to version 1.15.6 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: handlebars
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 handlebars@2.0.0
    Remediation: Upgrade to express-hbs@1.0.0.

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Prototype Pollution. Prototype access to the template engine allows for potential code execution.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade handlebars to version 4.6.0 or higher.

References

medium severity

Timing Attack

  • Vulnerable module: http-signature
  • Introduced through: request@2.51.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 http-signature@0.10.1
    Remediation: Upgrade to request@2.66.0.

Overview

http-signature is a reference implementation of Joyent's HTTP Signature scheme.

Affected versions of the package are vulnerable to Timing Attacks due to time-variable comparison of signatures.

The library implemented a character to character comparison, similar to the built-in string comparison mechanism, ===, and not a time constant string comparison. As a result, the comparison will fail faster when the first characters in the signature are incorrect. An attacker can use this difference to perform a timing attack, essentially allowing them to guess the signature one character at a time.

You can read more about timing attacks in Node.js on the Snyk blog.

Remediation

Upgrade http-signature to version 1.0.0 or higher.

References

medium severity

SQL Injection

  • Vulnerable module: knex
  • Introduced through: knex@0.7.3

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3
    Remediation: Upgrade to knex@0.7.6.

Overview

knex is a batteries-included SQL query & schema builder for Postgres, MySQL and SQLite3 and the Browser.

Column names are not properly escaped in the postgreSQL dialect. This may allow attackers to craft a query to the host DB and access private information. Writing the following code:

var query = knex.select('id","name').from('test')
console.log(query.toSQL())

Has the following result:

{ method: 'select',
  options: undefined,
  bindings: [],
  sql: 'select "id","name" from "test"' }

Remediation

Upgrade knex to versions 0.6.23, 0.7.6 or higher.

References

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: request
  • Introduced through: request@2.51.0 and sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 request@2.81.0

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).

NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity

Uncontrolled Resource Consumption ('Resource Exhaustion')

  • Vulnerable module: tar
  • Introduced through: sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar@2.2.2
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar-pack@3.4.1 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Uncontrolled Resource Consumption ('Resource Exhaustion') due to the lack of folders count validation during the folder creation process. An attacker who generates a large number of sub-folders can consume memory on the system running the software and even crash the client within few seconds of running it using a path with too many sub-folders inside.

Remediation

Upgrade tar to version 6.2.1 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: tough-cookie
  • Introduced through: sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 request@2.81.0 tough-cookie@2.3.4

Overview

tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.

PoC

// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
  "Slonser=polluted; Domain=__proto__; Path=/notauth",
  "https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
  "Auth=Lol; Domain=google.com; Path=/notauth",
  "https://google.com/"
);

//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade tough-cookie to version 4.1.3 or higher.

References

medium severity

  • Vulnerable module: cookie
  • Introduced through: express@4.10.6

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 cookie@0.1.2
    Remediation: Upgrade to express@4.21.1.

Overview

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name, path, or domain, which can be used to set unexpected values to other cookie fields.

Workaround

Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade cookie to version 0.7.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: hoek
  • Introduced through: request@2.51.0 and sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 hawk@1.1.1 hoek@0.9.1
    Remediation: Upgrade to request@2.82.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 hawk@1.1.1 boom@0.4.2 hoek@0.9.1
    Remediation: Upgrade to request@2.82.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 hawk@1.1.1 sntp@0.2.4 hoek@0.9.1
    Remediation: Upgrade to request@2.82.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 hawk@1.1.1 cryptiles@0.2.2 boom@0.4.2 hoek@0.9.1
    Remediation: Upgrade to request@2.82.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 hawk@3.1.3 hoek@2.16.3
    Remediation: Upgrade to sqlite3@5.0.3.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 hawk@3.1.3 boom@2.10.1 hoek@2.16.3
    Remediation: Upgrade to sqlite3@5.0.3.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 hawk@3.1.3 sntp@1.0.9 hoek@2.16.3
    Remediation: Upgrade to sqlite3@5.0.3.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 request@2.81.0 hawk@3.1.3 hoek@2.16.3
    Remediation: Upgrade to sqlite3@4.0.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 hawk@3.1.3 cryptiles@2.0.5 boom@2.10.1 hoek@2.16.3
    Remediation: Upgrade to sqlite3@5.0.3.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 request@2.81.0 hawk@3.1.3 boom@2.10.1 hoek@2.16.3
    Remediation: Upgrade to sqlite3@4.0.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 request@2.81.0 hawk@3.1.3 sntp@1.0.9 hoek@2.16.3
    Remediation: Upgrade to sqlite3@4.0.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 request@2.81.0 hawk@3.1.3 cryptiles@2.0.5 boom@2.10.1 hoek@2.16.3
    Remediation: Upgrade to sqlite3@4.0.0.

Overview

hoek is an Utility methods for the hapi ecosystem.

Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.

PoC by Olivier Arteau (HoLyVieR)

var Hoek = require('hoek');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';

var a = {};
console.log("Before : " + a.oops);
Hoek.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade hoek to version 4.2.1, 5.0.3 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: bookshelf@0.7.9, cheerio@0.18.0 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 bookshelf@0.7.9 lodash@2.4.2
    Remediation: Upgrade to bookshelf@0.10.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 cheerio@0.18.0 lodash@2.4.2
    Remediation: Upgrade to cheerio@0.20.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.11.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 findup-sync@0.1.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.8.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 lodash@2.4.1
    Remediation: Upgrade to lodash@4.17.5.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.

PoC by Olivier Arteau (HoLyVieR)

var _= require('lodash');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';

var a = {};
console.log("Before : " + a.oops);
_.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.5 or higher.

References

medium severity

HTTP Header Injection

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1
    Remediation: Upgrade to nodemailer@6.6.1.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to HTTP Header Injection if unsanitized user input that may contain newlines and carriage returns is passed into an address object.

PoC:

const userEmail = 'foo@bar.comrnSubject: foobar'; // imagine this comes from e.g. HTTP request params or is otherwise user-controllable
await transporter.sendMail({
from: '...',
to: '...',
replyTo: {
name: 'Customer',
address: userEmail,
},
subject: 'My Subject',
text: message,
});

Remediation

Upgrade nodemailer to version 6.6.1 or higher.

References

medium severity

Missing Release of Resource after Effective Lifetime

  • Vulnerable module: inflight
  • Introduced through: glob@4.3.2, fs-extra@0.13.0 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 glob@4.3.2 inflight@1.0.6
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 fs-extra@0.13.0 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar-pack@3.4.1 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar-pack@3.4.1 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar-pack@3.4.1 tar@2.2.2 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar-pack@3.4.1 fstream-ignore@1.0.5 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6

Overview

Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.

Exploiting this vulnerability results in crashing the node process or in the application crash.

Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.

To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.

PoC

const inflight = require('inflight');

function testInflight() {
  let i = 0;
  function scheduleNext() {
    let key = `key-${i++}`;
    const callback = () => {
    };
    for (let j = 0; j < 1000000; j++) {
      inflight(key, callback);
    }

    setImmediate(scheduleNext);
  }


  if (i % 100 === 0) {
    console.log(process.memoryUsage());
  }

  scheduleNext();
}

testInflight();

Remediation

There is no fixed version for inflight.

References

medium severity

Open Redirect

  • Vulnerable module: express
  • Introduced through: express@4.10.6

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6
    Remediation: Upgrade to express@4.19.2.

Overview

express is a minimalist web framework.

Affected versions of this package are vulnerable to Open Redirect due to the implementation of URL encoding using encodeurl before passing it to the location header. This can lead to unexpected evaluations of malformed URLs by common redirect allow list implementations in applications, allowing an attacker to bypass a properly implemented allow list and redirect users to malicious sites.

Remediation

Upgrade express to version 4.19.2, 5.0.0-beta.3 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: moment@2.8.3

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 moment@2.8.3
    Remediation: Upgrade to moment@2.15.2.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of the package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks for any locale that has separate format and standalone options and format input can be controlled by the user.

An attacker can provide a specially crafted input to the format function, which nearly matches the pattern being matched. This will cause the regular expression matching to take a long time, all the while occupying the event loop and preventing it from processing other requests and making the server unavailable (a Denial of Service attack).

Disclosure Timeline

  • October 19th, 2016 - Reported the issue to package owner.
  • October 19th, 2016 - Issue acknowledged by package owner.
  • October 24th, 2016 - Issue fixed and version 2.15.2 released.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

References

medium severity

Prototype Pollution

  • Vulnerable module: handlebars
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 handlebars@2.0.0
    Remediation: Upgrade to express-hbs@1.0.0.

Overview

handlebars is an extension to the Mustache templating language.

Affected versions of this package are vulnerable to Prototype Pollution when selecting certain compiling options to compile templates coming from an untrusted source.

POC

<script src="https://cdn.jsdelivr.net/npm/handlebars@latest/dist/handlebars.js"></script> 
<script> 
// compile the template 

var s2 = `{{'a/.") || alert("Vulnerable Handlebars JS when compiling in compat mode'}}`; 
var template = Handlebars.compile(s2, { 
compat: true 
}); 
// execute the compiled template and print the output to the console console.log(template({})); 
</script>

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade handlebars to version 4.7.7 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: minimist
  • Introduced through: extract-zip@1.0.3, html-to-text@1.0.0 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 extract-zip@1.0.3 minimist@0.1.0
    Remediation: Upgrade to extract-zip@1.1.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 extract-zip@1.0.3 mkdirp@0.5.0 minimist@0.0.8
    Remediation: Upgrade to extract-zip@1.6.8.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 html-to-text@1.0.0 optimist@0.6.1 minimist@0.0.10
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 minimist@1.1.3
    Remediation: Upgrade to knex@0.16.4.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 minimist@1.1.3
    Remediation: Upgrade to knex@0.95.0.

Overview

minimist is a parse argument options module.

Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a constructor or __proto__ payload.

PoC by Snyk

require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true

require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade minimist to version 0.2.1, 1.2.3 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: express-hbs
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11
    Remediation: Upgrade to express-hbs@2.4.0.

Overview

express-hbs is an Express handlebars template engine complete with multiple layouts, partials and blocks.

Affected versions of this package are vulnerable to Information Exposure. The layout parameter may trigger file disclosure vulnerabilities in downstream applications. This potential vulnerability is somewhat restricted in that only files with existing extensions (i.e. file.extension) can be included, files that lack an extension will have .hbs appended to them.

Remediation

Upgrade express-hbs to version 2.4.0 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: follow-redirects
  • Introduced through: nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1 mailcomposer@0.2.12 follow-redirects@0.0.3
    Remediation: Upgrade to nodemailer@1.0.0.

Overview

Affected versions of this package are vulnerable to Information Exposure by leaking the cookie header to a third party site in the process of fetching a remote URL with the cookie in the request body. If the response contains a location header, it will follow the redirect to another URL of a potentially malicious actor, to which the cookie would be exposed.

Remediation

Upgrade follow-redirects to version 1.14.7 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: handlebars
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 handlebars@2.0.0
    Remediation: Upgrade to express-hbs@1.0.0.

Overview

handlebars provides the power necessary to let you build semantic templates.

When using attributes without quotes in a handlebars template, an attacker can manipulate the input to introduce additional attributes, potentially executing code. This may lead to a Cross-site Scripting (XSS) vulnerability, assuming an attacker can influence the value entered into the template. If the handlebars template is used to render user-generated content, this vulnerability may escalate to a persistent XSS vulnerability.

Details

Cross-Site Scripting (XSS) attacks occur when an attacker tricks a user’s browser to execute malicious JavaScript code in the context of a victim’s domain. Such scripts can steal the user’s session cookies for the domain, scrape or modify its content, and perform or modify actions on the user’s behalf, actions typically blocked by the browser’s Same Origin Policy.

These attacks are possible by escaping the context of the web application and injecting malicious scripts in an otherwise trusted website. These scripts can introduce additional attributes (say, a "new" option in a dropdown list or a new link to a malicious site) and can potentially execute code on the clients side, unbeknown to the victim. This occurs when characters like < > " ' are not escaped properly.

There are a few types of XSS:

  • Persistent XSS is an attack in which the malicious code persists into the web app’s database.
  • Reflected XSS is an which the website echoes back a portion of the request. The attacker needs to trick the user into clicking a malicious link (for instance through a phishing email or malicious JS on another page), which triggers the XSS attack.
  • DOM-based XSS is an that occurs purely in the browser when client-side JavaScript echoes back a portion of the URL onto the page. DOM-Based XSS is notoriously hard to detect, as the server never gets a chance to see the attack taking place.

Example:

Assume handlebars was used to display user comments and avatar, using the following template: <img src={{avatarUrl}}><pre>{{comment}}</pre>

If an attacker spoofed their avatar URL and provided the following value: http://evil.org/avatar.png onload=alert(document.cookie)

The resulting HTML would be the following, triggering the script once the image loads: <img src=http://evil.org/avatar.png onload=alert(document.cookie)><pre>Gotcha!</pre>

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: js-beautify
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 js-beautify@1.4.2
    Remediation: Upgrade to express-hbs@2.3.2.

Overview

js-beautify is a reformat and re-indent bookmarklets, ugly JavaScript, unpack scripts packed by Dean Edward’s popular packer, as well as partly deobfuscate scripts processed by the npm package "javascript-obfuscator".

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an unsafe regex in tokenizer.py and tokenizer.js.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade js-beautify to version 1.14.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: lodash
  • Introduced through: bookshelf@0.7.9, cheerio@0.18.0 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 bookshelf@0.7.9 lodash@2.4.2
    Remediation: Upgrade to bookshelf@0.10.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 cheerio@0.18.0 lodash@2.4.2
    Remediation: Upgrade to cheerio@0.20.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.11.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 findup-sync@0.1.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.8.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 lodash@2.4.1
    Remediation: Upgrade to lodash@4.17.21.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber, trim and trimEnd functions.

POC

var lo = require('lodash');

function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}

return ret + "1";
}

var s = build_blank(50000)
var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0)

var time1 = Date.now();
lo.toNumber(s)
var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1)

var time2 = Date.now();
lo.trimEnd(s)
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2)

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: minimatch
  • Introduced through: express-hbs@0.7.11, glob@4.3.2 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 readdirp@0.3.3 minimatch@0.2.14
    Remediation: Upgrade to express-hbs@1.0.2.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 glob@4.3.2 minimatch@2.0.10
    Remediation: Upgrade to glob@5.0.15.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 findup-sync@0.1.3 glob@3.2.11 minimatch@0.3.0
    Remediation: Upgrade to knex@0.11.0.

Overview

minimatch is a minimal matching utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the braceExpand function in minimatch.js.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade minimatch to version 3.0.5 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: moment@2.8.3

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 moment@2.8.3
    Remediation: Upgrade to moment@2.11.2.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

An attacker can provide a long value to the duration function, which nearly matches the pattern being matched. This will cause the regular expression matching to take a long time, all the while occupying the event loop and preventing it from processing other requests and making the server unavailable (a Denial of Service attack).

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade moment to version 2.11.2 or greater.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ms
  • Introduced through: compression@1.2.2, express@4.10.6 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 compression@1.2.2 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to compression@1.4.4.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to express@4.12.4.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 morgan@1.5.0 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to morgan@1.5.3.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 finalhandler@0.3.2 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to express@4.12.4.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 send@0.10.1 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to express@4.12.4.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 serve-static@1.7.2 send@0.10.1 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to express@4.12.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 send@0.10.1 ms@0.6.2
    Remediation: Upgrade to express@4.12.4.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 serve-static@1.7.2 send@0.10.1 ms@0.6.2
    Remediation: Upgrade to express@4.12.0.

Overview

ms is a tiny milisecond conversion utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attack when converting a time period string (i.e. "2 days", "1h") into a milliseconds integer. A malicious user could pass extremely long strings to ms(), causing the server to take a long time to process, subsequently blocking the event loop for that extended period.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ms to version 0.7.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: nodemailer
  • Introduced through: nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1
    Remediation: Upgrade to nodemailer@6.9.9.

Overview

nodemailer is an Easy as cake e-mail sending from your Node.js applications

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the attachDataUrls parameter or when parsing attachments with an embedded file. An attacker can exploit this vulnerability by sending a specially crafted email that triggers inefficient regular expression evaluation, leading to excessive consumption of CPU resources.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade nodemailer to version 6.9.9 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: semver
  • Introduced through: semver@4.1.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 semver@4.1.0
    Remediation: Upgrade to semver@4.3.2.

Overview

semver is a semantic version parser used by npm.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The semver module uses regular expressions when parsing a version string. For a carefully crafted input, the time it takes to process these regular expressions is not linear to the length of the input. Since the semver module did not enforce a limit on the version string length, an attacker could provide a long string that would take up a large amount of resources, potentially taking a server down. This issue therefore enables a potential Denial of Service attack.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade semver to version 4.3.2 or higher.

References

medium severity

Root Path Disclosure

  • Vulnerable module: send
  • Introduced through: express@4.10.6

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 send@0.10.1
    Remediation: Upgrade to express@4.11.1.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 serve-static@1.7.2 send@0.10.1
    Remediation: Upgrade to express@4.11.0.

Overview

Send is a library for streaming files from the file system as an http response. It supports partial responses (Ranges), conditional-GET negotiation, high test coverage, and granular events which may be leveraged to take appropriate actions in your application or framework.

Affected versions of this package are vulnerable to a Root Path Disclosure.

Remediation

Upgrade send to version 0.11.1 or higher. If a direct dependency update is not possible, use snyk wizard to patch this vulnerability.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: uglify-js
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 handlebars@2.0.0 uglify-js@2.3.6
    Remediation: Upgrade to express-hbs@1.0.0.

Overview

uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the string_template and the decode_template functions.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade uglify-js to version 3.14.3 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: uglify-js
  • Introduced through: express-hbs@0.7.11

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express-hbs@0.7.11 handlebars@2.0.0 uglify-js@2.3.6
    Remediation: Upgrade to express-hbs@0.8.0.

Overview

The parse() function in the uglify-js package prior to version 2.6.0 is vulnerable to regular expression denial of service (ReDoS) attacks when long inputs of certain patterns are processed.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade to version 2.6.0 or greater. If a direct dependency update is not possible, use snyk wizard to patch this vulnerability.

References

medium severity

Buffer Overflow

  • Vulnerable module: validator
  • Introduced through: validator@3.26.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 validator@3.26.0
    Remediation: Upgrade to validator@5.0.0.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Buffer Overflow. It used a regular expression (/^(?:[A-Z0-9+\/]{4})*(?:[A-Z0-9+\/]{2}==|[A-Z0-9+\/]{3}=|[A-Z0-9+\/]{4})$/i) in order to validate Base64 strings.

Remediation

Upgrade validator to version 5.0.0 or higher.

References

medium severity

Improper Validation of Specified Type of Input

  • Vulnerable module: validator
  • Introduced through: validator@3.26.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 validator@3.26.0
    Remediation: Upgrade to validator@13.15.20.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Improper Validation of Specified Type of Input in the isURL() function which does not take into account : as the delimiter in browsers. An attackers can bypass protocol and domain validation by crafting URLs that exploit the discrepancy in protocol parsing that can lead to Cross-Site Scripting and Open Redirect attacks.

Remediation

Upgrade validator to version 13.15.20 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: validator@3.26.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 validator@3.26.0
    Remediation: Upgrade to validator@13.6.0.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isSlug function

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "111"
    for (var i = 0; i < n; i++) {
        ret += "a"
    }

    return ret+"_";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isSlug(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: validator@3.26.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 validator@3.26.0
    Remediation: Upgrade to validator@13.6.0.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isHSL function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = "hsla(0"
    for (var i = 0; i < n; i++) {
        ret += " "
    }

    return ret+"◎";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 1000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
       validator.isHSL(attack_str)
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: validator
  • Introduced through: validator@3.26.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 validator@3.26.0
    Remediation: Upgrade to validator@13.6.0.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the isEmail function.

PoC

var validator = require("validator")
function build_attack(n) {
    var ret = ""
    for (var i = 0; i < n; i++) {
        ret += "<"
    }

    return ret+"";
}
for(var i = 1; i <= 50000; i++) {
    if (i % 10000 == 0) {
        var time = Date.now();
        var attack_str = build_attack(i)
        validator.isEmail(attack_str,{ allow_display_name: true })
        var time_cost = Date.now() - time;
        console.log("attack_str.length: " + attack_str.length + ": " + time_cost+" ms")
   }
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade validator to version 13.6.0 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: xml2js
  • Introduced through: nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1 aws-sdk@2.0.5 xml2js@0.2.6
    Remediation: Upgrade to nodemailer@1.0.0.

Overview

Affected versions of this package are vulnerable to Prototype Pollution due to allowing an external attacker to edit or add new properties to an object. This is possible because the application does not properly validate incoming JSON keys, thus allowing the __proto__ property to be edited.

PoC

var parseString = require('xml2js').parseString;

let normal_user_request    = "<role>admin</role>";
let malicious_user_request = "<__proto__><role>admin</role></__proto__>";

const update_user = (userProp) => {
    // A user cannot alter his role. This way we prevent privilege escalations.
    parseString(userProp, function (err, user) {
        if(user.hasOwnProperty("role") && user?.role.toLowerCase() === "admin") {
            console.log("Unauthorized Action");
        } else {
            console.log(user?.role[0]);
        }
    });
}

update_user(normal_user_request);
update_user(malicious_user_request);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade xml2js to version 0.5.0 or higher.

References

medium severity

Cross-site Scripting

  • Vulnerable module: express
  • Introduced through: express@4.10.6

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6
    Remediation: Upgrade to express@4.20.0.

Overview

express is a minimalist web framework.

Affected versions of this package are vulnerable to Cross-site Scripting due to improper handling of user input in the response.redirect method. An attacker can execute arbitrary code by passing malicious input to this method.

Note

To exploit this vulnerability, the following conditions are required:

  1. The attacker should be able to control the input to response.redirect()

  2. express must not redirect before the template appears

  3. the browser must not complete redirection before:

  4. the user must click on the link in the template

Remediation

Upgrade express to version 4.20.0, 5.0.0 or higher.

References

medium severity

Remote Memory Exposure

  • Vulnerable module: request
  • Introduced through: request@2.51.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0
    Remediation: Upgrade to request@2.68.0.

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Remote Memory Exposure. A potential remote memory exposure vulnerability exists in request. If a request uses a multipart attachment and the body type option is number with value X, then X bytes of uninitialized memory will be sent in the body of the request.

Note that while the impact of this vulnerability is high (memory exposure), exploiting it is likely difficult, as the attacker needs to somehow control the body type of the request. One potential exploit scenario is when a request is composed based on JSON input, including the body type, allowing a malicious JSON to trigger the memory leak.

Details

Constructing a Buffer class with integer N creates a Buffer of length N with non zero-ed out memory. Example:

var x = new Buffer(100); // uninitialized Buffer of length 100
// vs
var x = new Buffer('100'); // initialized Buffer with value of '100'

Initializing a multipart body in such manner will cause uninitialized memory to be sent in the body of the request.

Proof of concept

var http = require('http')
var request = require('request')

http.createServer(function (req, res) {
  var data = ''
  req.setEncoding('utf8')
  req.on('data', function (chunk) {
    console.log('data')
    data += chunk
  })
  req.on('end', function () {
    // this will print uninitialized memory from the client
    console.log('Client sent:\n', data)
  })
  res.end()
}).listen(8000)

request({
  method: 'POST',
  uri: 'http://localhost:8000',
  multipart: [{ body: 1000 }]
},
function (err, res, body) {
  if (err) return console.error('upload failed:', err)
  console.log('sent')
})

Remediation

Upgrade request to version 2.68.0 or higher.

References

medium severity

Uninitialized Memory Exposure

  • Vulnerable module: tunnel-agent
  • Introduced through: request@2.51.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 tunnel-agent@0.4.3
    Remediation: Upgrade to request@2.81.0.

Overview

tunnel-agent is HTTP proxy tunneling agent. Affected versions of the package are vulnerable to Uninitialized Memory Exposure.

A possible memory disclosure vulnerability exists when a value of type number is used to set the proxy.auth option of a request request and results in a possible uninitialized memory exposures in the request body.

This is a result of unobstructed use of the Buffer constructor, whose insecure default constructor increases the odds of memory leakage.

Details

Constructing a Buffer class with integer N creates a Buffer of length N with raw (not "zero-ed") memory.

In the following example, the first call would allocate 100 bytes of memory, while the second example will allocate the memory needed for the string "100":

// uninitialized Buffer of length 100
x = new Buffer(100);
// initialized Buffer with value of '100'
x = new Buffer('100');

tunnel-agent's request construction uses the default Buffer constructor as-is, making it easy to append uninitialized memory to an existing list. If the value of the buffer list is exposed to users, it may expose raw server side memory, potentially holding secrets, private data and code. This is a similar vulnerability to the infamous Heartbleed flaw in OpenSSL.

Proof of concept by ChALkeR

require('request')({
  method: 'GET',
  uri: 'http://www.example.com',
  tunnel: true,
  proxy:{
      protocol: 'http:',
      host:"127.0.0.1",
      port:8080,
      auth:80
  }
});

You can read more about the insecure Buffer behavior on our blog.

Similar vulnerabilities were discovered in request, mongoose, ws and sequelize.

Remediation

Upgrade tunnel-agent to version 0.6.0 or higher. Note This is vulnerable only for Node <=4

References

medium severity

Session Fixation

  • Vulnerable module: passport
  • Introduced through: passport@0.2.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 passport@0.2.1
    Remediation: Upgrade to passport@0.6.0.

Overview

passport is a Simple, unobtrusive authentication for Node.js.

Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.

Remediation

Upgrade passport to version 0.6.0 or higher.

References

medium severity

Improper Handling of Unexpected Data Type

  • Vulnerable module: on-headers
  • Introduced through: compression@1.2.2

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 compression@1.2.2 on-headers@1.0.2
    Remediation: Upgrade to compression@1.8.1.

Overview

Affected versions of this package are vulnerable to Improper Handling of Unexpected Data Type via the response.writeHead function. An attacker can manipulate HTTP response headers by passing an array to this function, potentially leading to unintended disclosure or modification of header information.

Workaround

This vulnerability can be mitigated by passing an object to response.writeHead() instead of an array.

Remediation

Upgrade on-headers to version 1.1.0 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: lodash
  • Introduced through: bookshelf@0.7.9, cheerio@0.18.0 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 bookshelf@0.7.9 lodash@2.4.2
    Remediation: Upgrade to bookshelf@0.10.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 cheerio@0.18.0 lodash@2.4.2
    Remediation: Upgrade to cheerio@0.20.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.11.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 knex@0.7.3 liftoff@0.13.6 findup-sync@0.1.3 lodash@2.4.2
    Remediation: Upgrade to knex@0.8.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 lodash@2.4.1
    Remediation: Upgrade to lodash@4.17.11.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It parses dates using regex strings, which may cause a slowdown of 2 seconds per 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade lodash to version 4.17.11 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: validator
  • Introduced through: validator@3.26.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 validator@3.26.0
    Remediation: Upgrade to validator@3.34.0.

Overview

validator is a library of string validators and sanitizers.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) in IE9 due to unescaped backticks.

Details

<>

Remediation

Upgrade validator to version 3.35.0 or higher.

References

medium severity

Insecure Randomness

  • Vulnerable module: node-uuid
  • Introduced through: node-uuid@1.4.2

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 node-uuid@1.4.2
    Remediation: Upgrade to node-uuid@1.4.6.

Overview

node-uuid is a Simple, fast generation of RFC4122 UUIDS.

Affected versions of this package are vulnerable to Insecure Randomness. It uses the cryptographically insecure Math.random which can produce predictable values and should not be used in security-sensitive context.

Remediation

Upgrade node-uuid to version 1.4.4 or greater.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: debug
  • Introduced through: compression@1.2.2, express@4.10.6 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 compression@1.2.2 debug@2.1.3
    Remediation: Upgrade to compression@1.7.1.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 debug@2.1.3
    Remediation: Upgrade to express@4.15.5.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 morgan@1.5.0 debug@2.1.3
    Remediation: Upgrade to morgan@1.9.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 finalhandler@0.3.2 debug@2.1.3
    Remediation: Upgrade to express@4.15.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 send@0.10.1 debug@2.1.3
    Remediation: Upgrade to express@4.15.5.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 serve-static@1.7.2 send@0.10.1 debug@2.1.3
    Remediation: Upgrade to express@4.15.5.

Overview

debug is a small debugging utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the function useColors via manipulation of the str argument. The vulnerability can cause a very low impact of about 2 seconds of matching time for data 50k characters long.

Note: CVE-2017-20165 is a duplicate of this vulnerability.

PoC

Use the following regex in the %o formatter.

/\s*\n\s*/

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade debug to version 2.6.9, 3.1.0, 3.2.7, 4.3.1 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: hawk
  • Introduced through: request@2.51.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 request@2.51.0 hawk@1.1.1
    Remediation: Upgrade to request@2.59.0.

Overview

hawk is an HTTP authentication scheme using a message authentication code (MAC) algorithm to provide partial HTTP request cryptographic verification.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

You can read more about Regular Expression Denial of Service (ReDoS) on our blog.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: mime
  • Introduced through: express@4.10.6 and nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 send@0.10.1 mime@1.2.11
    Remediation: Upgrade to express@4.16.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1 mailcomposer@0.2.12 mime@1.2.11
    Remediation: Upgrade to nodemailer@1.0.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 serve-static@1.7.2 send@0.10.1 mime@1.2.11
    Remediation: Upgrade to express@4.16.0.

Overview

mime is a comprehensive, compact MIME type module.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex /.*[\.\/\\]/ in its lookup, which can cause a slowdown of 2 seconds for 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade mime to version 1.4.1, 2.0.3 or higher.

References

low severity

Prototype Pollution

  • Vulnerable module: minimist
  • Introduced through: extract-zip@1.0.3 and html-to-text@1.0.0

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 extract-zip@1.0.3 minimist@0.1.0
    Remediation: Upgrade to extract-zip@1.1.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 extract-zip@1.0.3 mkdirp@0.5.0 minimist@0.0.8
    Remediation: Upgrade to extract-zip@1.6.8.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 html-to-text@1.0.0 optimist@0.6.1 minimist@0.0.10

Overview

minimist is a parse argument options module.

Affected versions of this package are vulnerable to Prototype Pollution due to a missing handler to Function.prototype.

Notes:

  • This vulnerability is a bypass to CVE-2020-7598

  • The reason for the different CVSS between CVE-2021-44906 to CVE-2020-7598, is that CVE-2020-7598 can pollute objects, while CVE-2021-44906 can pollute only function.

PoC by Snyk

require('minimist')('--_.constructor.constructor.prototype.foo bar'.split(' '));
console.log((function(){}).foo); // bar

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade minimist to version 0.2.4, 1.2.6 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: moment@2.8.3

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 moment@2.8.3
    Remediation: Upgrade to moment@2.19.3.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (/[0-9]*['a-z\u00A0-\u05FF\u0700-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF]+|[\u0600-\u06FF\/]+(\s*?[\u0600-\u06FF]+){1,2}/i) in order to parse dates specified as strings. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade moment to version 2.19.3 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: ms
  • Introduced through: compression@1.2.2, express@4.10.6 and others

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 compression@1.2.2 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to compression@1.7.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to express@4.15.3.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 morgan@1.5.0 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to morgan@1.8.2.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 finalhandler@0.3.2 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to express@4.15.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 send@0.10.1 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to express@4.15.3.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 serve-static@1.7.2 send@0.10.1 debug@2.1.3 ms@0.7.0
    Remediation: Upgrade to express@4.15.3.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 send@0.10.1 ms@0.6.2
    Remediation: Upgrade to express@4.15.3.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 serve-static@1.7.2 send@0.10.1 ms@0.6.2
    Remediation: Upgrade to express@4.15.3.

Overview

ms is a tiny millisecond conversion utility.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms() function.

Proof of concept

ms = require('ms');
ms('1'.repeat(9998) + 'Q') // Takes about ~0.3s

Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author. Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.

For more information on Regular Expression Denial of Service (ReDoS) attacks, go to our blog.

Disclosure Timeline

  • Feb 9th, 2017 - Reported the issue to package owner.
  • Feb 11th, 2017 - Issue acknowledged by package owner.
  • April 12th, 2017 - Fix PR opened by Snyk Security Team.
  • May 15th, 2017 - Vulnerability published.
  • May 16th, 2017 - Issue fixed and version 2.0.0 released.
  • May 21th, 2017 - Patches released for versions >=0.7.1, <=1.0.0.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade ms to version 2.0.0 or higher.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: tar
  • Introduced through: sqlite3@3.0.4

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar@2.2.2
    Remediation: Upgrade to sqlite3@4.0.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 sqlite3@3.0.4 node-pre-gyp@0.6.39 tar-pack@3.4.1 tar@2.2.2

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). When stripping the trailing slash from files arguments, the f.replace(/\/+$/, '') performance of this function can exponentially degrade when f contains many / characters resulting in ReDoS.

This vulnerability is not likely to be exploitable as it requires that the untrusted input is being passed into the tar.extract() or tar.list() array of entries to parse/extract, which would be unusual.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade tar to version 6.1.4, 5.0.8, 4.4.16 or higher.

References

low severity

Information Exposure

  • Vulnerable module: follow-redirects
  • Introduced through: nodemailer@0.7.1

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 nodemailer@0.7.1 mailcomposer@0.2.12 follow-redirects@0.0.3
    Remediation: Upgrade to nodemailer@1.0.0.

Overview

Affected versions of this package are vulnerable to Information Exposure due a leakage of the Authorization header from the same hostname during HTTPS to HTTP redirection. An attacker who can listen in on the wire (or perform a MITM attack) will be able to receive the Authorization header due to the usage of the insecure HTTP protocol which does not verify the hostname the request is sending to.

Remediation

Upgrade follow-redirects to version 1.14.8 or higher.

References

low severity

Cross-site Scripting

  • Vulnerable module: send
  • Introduced through: express@4.10.6

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 send@0.10.1
    Remediation: Upgrade to express@4.20.0.
  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 serve-static@1.7.2 send@0.10.1
    Remediation: Upgrade to express@4.21.0.

Overview

send is a Better streaming static file server with Range and conditional-GET support

Affected versions of this package are vulnerable to Cross-site Scripting due to improper user input sanitization passed to the SendStream.redirect() function, which executes untrusted code. An attacker can execute arbitrary code by manipulating the input parameters to this method.

Note:

Exploiting this vulnerability requires the following:

  1. The attacker needs to control the input to response.redirect()

  2. Express MUST NOT redirect before the template appears

  3. The browser MUST NOT complete redirection before

  4. The user MUST click on the link in the template

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade send to version 0.19.0, 1.1.0 or higher.

References

low severity

Cross-site Scripting

  • Vulnerable module: serve-static
  • Introduced through: express@4.10.6

Detailed paths

  • Introduced through: ghost@NodejsHouston/nodejshouston.com#d543619e0a76a2eb56a5c0dc17eb784e3f901134 express@4.10.6 serve-static@1.7.2
    Remediation: Upgrade to express@4.20.0.

Overview

serve-static is a server.

Affected versions of this package are vulnerable to Cross-site Scripting due to improper sanitization of user input in the redirect function. An attacker can manipulate the redirection process by injecting malicious code into the input.

Note

To exploit this vulnerability, the following conditions are required:

  1. The attacker should be able to control the input to response.redirect()

  2. express must not redirect before the template appears

  3. the browser must not complete redirection before:

  4. the user must click on the link in the template

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade serve-static to version 1.16.0, 2.1.0 or higher.

References