Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def main():
image = cv2.imread("test_image1.png")
step_size_px = 10
vertex_row_count = image.shape[0] // step_size_px
vertex_col_count = image.shape[1] // step_size_px
vertex_count = vertex_row_count * vertex_col_count
face_row_count = vertex_row_count - 1
face_col_count = vertex_col_count - 1
print("Grid size: ", vertex_row_count, " x ", vertex_col_count)
print("Vertex count: ", vertex_count)
warp_coefficient_count = 2 * vertex_count
# G = np.zeros((2 * face_col_count * face_row_count, vertex_col_count * vertex_row_count), np.float32)
G = np.zeros(
(face_col_count * vertex_row_count + face_row_count * vertex_col_count, vertex_count),
np.float32)
ix_G_row = 0
for ix_dx_row in range(vertex_row_count):
for ix_dx_col in range(face_col_count):
col_index0 = vertex_col_count * ix_dx_row + ix_dx_col
col_index1 = col_index0 + 1
G[ix_G_row, col_index0] = -1.0
G[ix_G_row, col_index1] = 1.0
ix_G_row += 1
for ix_dy_row in range(face_row_count):
for ix_dy_col in range(vertex_col_count):
col_index0 = vertex_col_count * ix_dy_row + ix_dy_col
col_index1 = col_index0 + vertex_col_count
G[ix_G_row, col_index0] = -1.0
def split_bit_stream(self, width, bit_stream, high_bits):
# print bit_stream
# print high_bits
# Split bitstream into bytes
byte_width = width // 7
bit_pos = 0
filler_bit = "0"
byte_splits = np.zeros((byte_width), dtype=np.uint8)
for byte_index in range(byte_width):
remaining_bits = len(bit_stream) - bit_pos
bit_chunk = ""
if remaining_bits < 0:
bit_chunk = filler_bit * 7
else:
if remaining_bits < 7:
bit_chunk = bit_stream[bit_pos:]
bit_chunk += filler_bit * (7-remaining_bits)
else:
bit_chunk = bit_stream[bit_pos:bit_pos+7]
bit_chunk = bit_chunk[::-1]
import cv2
import numpy as np
import scipy.spatial
import sys
import algorithm
import binarize
import lib
from lib import GREEN
N_values = np.array([64, 64, 64, 128, 128, 128, 256, 256, 256, 256])
k_values = np.array([5, 4, 3, 5, 4, 3, 5, 4, 3, 2])
s_values = N_values.astype(np.float64) / k_values
theta_values = np.arange(32) / np.pi
# radius of circle for "nearby" CCs projection
radius = 100
radius_sq = radius ** 2
epsilon = 2.8
def pack_label(s, theta):
return theta * s_values.shape[0] + s
def unpack_label(label):
s_len = s_values.shape[0]
return label % s_len, label // s_len
def V_p(nearby_centroids, centroids_rotated, ellipses_sheared):
result = np.zeros((centroids_rotated[0].shape[0],
def _equalize_pil(img, mask=None):
histogram = cv2.calcHist([img], [0], mask, [256], (0, 256)).ravel()
h = [_f for _f in histogram if _f]
if len(h) <= 1:
return img.copy()
step = np.sum(h[:-1]) // 255
if not step:
return img.copy()
lut = np.empty(256, dtype=np.uint8)
n = step // 2
for i in range(256):
lut[i] = min(n // step, 255)
n += histogram[i]
return cv2.LUT(img, np.array(lut))
# ERI[:,jl]
eri_col = mol.intor('int2e_sph',
shls_slice=(0,mol.nbas,0,mol.nbas,sj,sj+1,sl,sl+1))
cj, cl = max(j-dims[sj],0), max(l-dims[sl],0)
chol_vecs[0] = numpy.copy(eri_col[:,:,cj,cl].reshape(nao*nao)) / delta_max**0.5
nchol = 0
while abs(delta_max) > max_error:
# Update cholesky vector
start = time.time()
# M'_ii = \sum_x L_i^x L_i^x
Mapprox += chol_vecs[nchol] * chol_vecs[nchol]
# D_ii = M_ii - M'_ii
delta = diag - Mapprox
nu = numpy.argmax(numpy.abs(delta))
delta_max = numpy.abs(delta[nu])
# Compute ERI chunk.
# shls_slice computes shells of integrals as determined by the angular
# momentum of the basis function and the number of contraction
# coefficients. Need to search for AO index within this shell indexing
# scheme.
# AO index.
j = nu // nao
l = nu % nao
# Associated shell index.
sj = numpy.searchsorted(dims, j)
sl = numpy.searchsorted(dims, l)
if dims[sj] != j and j != 0:
sj -= 1
if dims[sl] != l and l != 0:
sl -= 1
# Compute ERI chunk.
def test_compare_rankings():
"""``compare`` should work as expected for rankings."""
params = np.array([0, 100, -100, -100, -100])
x1 = compare((3, 0), params, rank=True)
assert np.array_equal(x1, np.array([0, 3]))
x2 = compare((3, 0, 1), params, rank=True)
assert np.array_equal(x2, np.array([1, 0, 3]))
# secondary mesh
h = [(csz, npadz-4, -pf), (csz, ncz), (csz, npadz-4, pf)]
meshs = Mesh.TensorMesh(3*[h], x0 = 'CCC')
# mappings
primaryMapping = (
Maps.ExpMap(meshp) *
Maps.SurjectFull(meshp) *
Maps.Projection(nP=8, index=[0])
)
mapping = (
Maps.ExpMap(meshs) *
Maps.ParametrizedBlockInLayer(meshs) *
Maps.Projection(
nP=8, index=np.hstack([np.r_[0], np.arange(0, 8)])
)
)
primaryMap2Meshs = (
Maps.ExpMap(meshs) *
Maps.SurjectFull(meshs) *
Maps.Projection(nP=8, index=[0])
)
class PrimSecFDEMTest(object):
# --------------------- Run some tests! --------------------- #
def DataTest(self):
print('\nTesting Data')
dpred_primsec = self.secondaryProblem.dpred(
def test_small(self):
assert len(self.image.files) == self.num_files_in_sample
data = np.asarray([0xff, 0xff, 0x00, 0x60, 0x01, 0x60, 1, 2], dtype=np.uint8)
self.image.write_file("TEST.XEX", None, data)
assert len(self.image.files) == self.num_files_in_sample + 1
data2 = np.frombuffer(self.image.find_file("TEST.XEX"), dtype=np.uint8)
assert np.array_equal(data, data2[0:len(data)])
def load_cifar(cifar_location, cifar_filename="train.data", norm=False):
cifar_path = cifar_location + "/" + cifar_filename
print("Source file: %s" % cifar_path)
df = pd.read_csv(cifar_path, sep=",", header=None)
data = df.values
print("Number of image files: %d" % len(data))
y = data[:, 0]
X = data[:, 1:]
Z = X
if norm:
mu = np.mean(X.T, 0)
sigma = np.var(X.T, 0)
Z = (X.T - mu) / np.array([np.sqrt(z) if z > 0 else 1. for z in sigma])
Z = Z.T
return (Z, y)
# Initialize scaling
d = np.ones(n + m)
d_temp = np.ones(n + m)
# Define reduced KKT matrix to scale
KKT = spa.vstack([
spa.hstack([P, A.T]),
spa.hstack([A, spa.csc_matrix((m, m))])]).tocsc()
# Iterate Scaling
for i in range(settings.scaling):
for j in range(n + m):
norm_col_j = spa.linalg.norm(KKT[:, j],
np.inf)
if norm_col_j > SCALING_REG:
d_temp[j] = 1./(np.sqrt(norm_col_j))
S_temp = spa.diags(d_temp)
d = np.multiply(d, d_temp)
KKT = S_temp.dot(KKT.dot(S_temp))
# Obtain Scaler Matrices
D = spa.diags(d[:n])
if m == 0:
# spa.diags() will throw an error if fed with an empty array
E = spa.csc_matrix((0, 0))
else:
E = spa.diags(d[n:])
# Scale problem Matrices
P = D.dot(P.dot(D)).tocsc()
A = E.dot(A.dot(D)).tocsc()