How to use the numpy.float32 function in numpy

To help you get started, we’ve selected a few numpy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github freewym / espresso / tests / speech_recognition / asr_test_base.py View on Github external
def get_dummy_encoder_output(encoder_out_shape=(100, 80, 5)):
    """
    This only provides an example to generate dummy encoder output
    """
    (T, B, D) = encoder_out_shape
    encoder_out = {}

    encoder_out["encoder_out"] = torch.from_numpy(
        np.random.randn(*encoder_out_shape).astype(np.float32)
    )
    seq_lengths = torch.from_numpy(np.random.randint(low=1, high=T, size=B))
    # some dummy mask
    encoder_out["encoder_padding_mask"] = torch.arange(T).view(1, T).expand(
        B, -1
    ) >= seq_lengths.view(B, 1).expand(-1, T)
    encoder_out["encoder_padding_mask"].t_()

    # encoer_padding_mask is (T, B) tensor, with (t, b)-th element indicate
    # whether encoder_out[t, b] is valid (=0) or not (=1)
    return encoder_out
github tensorflow / models / research / object_detection / utils / test_utils.py View on Github external
boxes: numpy array of shape [num_boxes, 4]. Each row is in form
        [y_min, x_min, y_max, x_max].
  """

  y_1 = np.random.uniform(size=(1, num_boxes)) * max_height
  y_2 = np.random.uniform(size=(1, num_boxes)) * max_height
  x_1 = np.random.uniform(size=(1, num_boxes)) * max_width
  x_2 = np.random.uniform(size=(1, num_boxes)) * max_width

  boxes = np.zeros(shape=(num_boxes, 4))
  boxes[:, 0] = np.minimum(y_1, y_2)
  boxes[:, 1] = np.minimum(x_1, x_2)
  boxes[:, 2] = np.maximum(y_1, y_2)
  boxes[:, 3] = np.maximum(x_1, x_2)

  return boxes.astype(np.float32)
github brandondube / prysm / tests / test_propagation.py View on Github external
def test_obj_oriented_wavefront_focusing_reverses():
    x = y = np.arange(128, dtype=np.float32)
    z = np.random.rand(128, 128)
    wf = propagation.Wavefront(x=x, y=y, fcn=z, wavelength=HeNe)
    wf2 = wf.focus(1, 1).unfocus(1, 1)  # first is efl, meaningless.  second is Q, we neglect padding at the moment
    assert np.allclose(wf.fcn, wf2.fcn)
github maweigert / biobeam / biobeam / core / focus_field_lattice.py View on Github external
ex_g = OCLArray.empty((Nz, Ny, Nx), np.complex64)
    ey_g = OCLArray.empty((Nz, Ny, Nx), np.complex64)
    ez_g = OCLArray.empty((Nz, Ny, Nx), np.complex64)

    kxs_g = OCLArray.from_array(kxs.astype(np.float32))
    kys_g = OCLArray.from_array(kys.astype(np.float32))

    t = time.time()

    p.run_kernel("debye_wolf_lattice", (Nx, Ny, Nz),
                 None,
                 ex_g.data,
                 ey_g.data,
                 ez_g.data,
                 u_g.data,
                 np.float32(1.), np.float32(0.),
                 # np.float32(-dx*(Nx-1)//2.),np.float32(dx*(Nx-1)//2.),
                 # np.float32(-dy*(Ny-1)//2.),np.float32(dy*(Ny-1)//2.),
                 # np.float32(-dz*(Nz-1)//2.),np.float32(dz*(Nz-1)//2.),
                 np.float32(dx*(-Nx//2)), np.float32(dx*(Nx//2-1)),
                 np.float32(dy*(-Ny//2)), np.float32(dy*(Ny//2-1)),
                 np.float32(dz*(-Nz//2)), np.float32(dz*(Nz//2-1)),
                 np.float32(1.*lam/n0),
                 np.float32(alpha1),
                 np.float32(alpha2),
                 kxs_g.data,
                 kys_g.data,
                 np.int32(len(kxs)),
                 np.float32(sigma)
                 )

    u = u_g.get()
github ChengBinJin / semantic-image-inpainting / src / mask_generator.py View on Github external
def half_mask(half_type, img_size):
    mask = np.ones((img_size, img_size), dtype=np.float32)
    half = int(img_size / 2.)

    if half_type == 0:  # top mask
        mask[:half, :] = 0.
    elif half_type == 1:  # bottom mask
        mask[half:, :] = 0.
    elif half_type == 2:  # left mask
        mask[:, :half] = 0.
    elif half_type == 3:  # right mask
        mask[:, half:] = 0.
    else:
        raise NotImplementedError

    return mask
github veronicachelu / meta-learning / meta_mdp / network.py View on Github external
hidden = tf.concat([self.elu, self.prev_rewards, self.prev_actions_onehot,
                                        self.timestep], 1, name="Concatenated_input")
            else:
                hidden = self.elu

            summary_hidden_act = tf.contrib.layers.summarize_activation(hidden)

            rnn_in = tf.expand_dims(hidden, [0], name="RNN_input")
            step_size = tf.shape(self.inputs)[:1]

            if FLAGS.fw:
                rnn_cell = LayerNormFastWeightsBasicRNNCell(48)
                # self.initial_state = rnn_cell.zero_state(tf.shape(self.inputs)[0], tf.float32)
                # self.initial_fast_weights = rnn_cell.zero_fast_weights(tf.shape(self.inputs)[0], tf.float32)
                h_init = np.zeros((1, 48), np.float32)
                fw_init = np.zeros((1, 48, 48), np.float32)
                self.state_init = [h_init, fw_init]
                h_in = tf.placeholder(tf.float32, [1, 48], name="hidden_state")
                fw_in = tf.placeholder(tf.float32, [1, 48, 48], name="fast_weights")
                self.state_in = (h_in, fw_in)

                rnn_outputs, rnn_state = tf.nn.dynamic_rnn(
                    rnn_cell, rnn_in, initial_state=self.state_in, sequence_length=step_size,
                    time_major=False)
                rnn_h, rnn_fw = rnn_state
                self.state_out = (rnn_h[:1, :], rnn_fw[:1, :])
                rnn_out = tf.reshape(rnn_outputs, [-1, 48], name="RNN_out")
            else:
                lstm_cell = tf.contrib.rnn.LayerNormBasicLSTMCell(48)
                c_init = np.zeros((1, lstm_cell.state_size.c), np.float32)
                h_init = np.zeros((1, lstm_cell.state_size.h), np.float32)
                self.state_init = [c_init, h_init]
github knorth55 / chainer-fcis / fcis / models / fcis_train_chain.py View on Github external
def _smooth_l1_loss(x, t, in_weight, sigma):
    sigma2 = sigma ** 2
    diff = in_weight * (x - t)
    abs_diff = F.absolute(diff)
    flag = (abs_diff.array < (1. / sigma2)).astype(np.float32)

    y = (flag * (sigma2 / 2.) * F.square(diff) +
         (1 - flag) * (abs_diff - 0.5 / sigma2))

    return F.sum(y)
github bwinkel / pycraf / pycraf / itudata / p.452-16 / make_npy.py View on Github external
lons = np.genfromtxt(os.path.join(BASEPATH, 'LON.TXT'))
    lats = np.genfromtxt(os.path.join(BASEPATH, 'LAT.TXT'))
    dn50 = np.genfromtxt(os.path.join(BASEPATH, 'DN50.TXT'))
    n050 = np.genfromtxt(os.path.join(BASEPATH, 'N050.TXT'))


    # import matplotlib.pyplot as plt

    # plt.contourf(lons, lats, dn50, 128)
    # plt.show()

    # plt.contourf(lons, lats, n050, 128)
    # plt.show()

    save_kwargs = {
        'lons': lons.astype(np.float32),
        'lats': lats.astype(np.float32),
        'dn50': dn50.astype(np.float32),
        'n050': n050.astype(np.float32),
        }
    np.savez('refract_map', **save_kwargs)
github healpy / healpy / healpy / fitsfunc.py View on Github external
----------
    t : data type
      The data type for which the FITS type is requested

    Returns
    -------
    fits_type : str or None
      The FITS string code describing the data type, or None if unknown type.
    """
    conv = {
        np.dtype(np.bool): "L",
        np.dtype(np.uint8): "B",
        np.dtype(np.int16): "I",
        np.dtype(np.int32): "J",
        np.dtype(np.int64): "K",
        np.dtype(np.float32): "E",
        np.dtype(np.float64): "D",
        np.dtype(np.complex64): "C",
        np.dtype(np.complex128): "M",
    }
    try:
        if t in conv:
            return conv[t]
    except:
        pass
    try:
        if np.dtype(t) in conv:
            return conv[np.dtype(t)]
    except:
        pass
    try:
        if np.dtype(type(t)) in conv:
github lc222 / key-value-MemNN / model.py View on Github external
def position_encoding(sentence_size, embedding_size):
    """
    Position Encoding described in section 4.1 [1]
    """
    encoding = np.ones((embedding_size, sentence_size), dtype=np.float32)
    ls = sentence_size+1
    le = embedding_size+1
    for i in range(1, le):
        for j in range(1, ls):
            encoding[i-1, j-1] = (i - (le-1)/2) * (j - (ls-1)/2)
    encoding = 1 + 4 * encoding / embedding_size / sentence_size
    return np.transpose(encoding)