How to use the numpy.asarray function in numpy

To help you get started, we’ve selected a few numpy examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github robmcmullen / omnivore / test / test_add_file.py View on Github external
def test_small(self):
        assert len(self.image.files) == self.num_files_in_sample

        data = np.asarray([0xff, 0xff, 0x00, 0x60, 0x01, 0x60, 1, 2], dtype=np.uint8)
        self.image.write_file("TEST.XEX", None, data)
        assert len(self.image.files) == self.num_files_in_sample + 1

        data2 = np.frombuffer(self.image.find_file("TEST.XEX"), dtype=np.uint8)
        assert np.array_equal(data, data2[0:len(data)])
github qkaren / Adversarial-Network-for-Discourse-ACL2017 / run_gan.py View on Github external
def _fit_one(self, model_name, data_batched):
        # input data should be batched
        data = data_batched
        loss = None
        m = self._models[model_name]
        if model_name=='ori+clf':
            loss = m.train_on_batch(self._prepare_inputs(data), [data['sense']])
        elif model_name=='gen+clf':
            loss = m.train_on_batch(self._prepare_inputs(data,add_arg2=0,add_arg2plus=1,drop_arg2plus=self.drop_conn), [data['sense']])
        elif model_name=='joint+clf':
            loss = m.train_on_batch(self._prepare_inputs(data,add_arg2plus=1,drop_arg2plus=self.drop_conn), [data['sense'], data['sense']])
        elif model_name=='discr':
            y_0 = np.asarray([0. for i in data['arg1']])
            y_1 = np.asarray([self.alpha for i in data['arg1']])    # using alpha for label smoothing
            loss = m.train_on_batch(self._prepare_inputs(data,add_arg2plus=1,add_y=self.discr_ydim), [y_0, y_1, data['sense'], data['sense']])
        elif model_name=='ori+clf+discr':
            y_1 = np.asarray([self.alpha for i in data['arg1']])
            loss = m.train_on_batch(self._prepare_inputs(data,add_arg2plus=1,add_y=self.discr_ydim), [data['sense'], y_1, y_1, y_1])
        else:
            raise("Unkown model %s." % model_name)
        return loss
github probcomp / crosscat / src / utils / useCase_utils.py View on Github external
# Find which view each conditional attribute (column_indices) belongs to 
        views_for_cols = view_assignments[column_indices]
        print(views_for_cols)
        for viewindx in views_for_cols:
            # Find which cluster the target row is in 
            tgt_cluster = X_D[viewindx][row_index]
    
            # Find every row in this cluster and give them all a point
            match_rows = [i for i in range(len(X_D[viewindx])) if X_D[viewindx][i] == tgt_cluster]
            score[match_rows] = score[match_rows] + 1
            
    
    # Normalize between 0 and 1
    normfactor = len(column_indices)*len(X_D_list)
    normscore = numpy.asarray([float(a)/normfactor for a in score])

    # Sort in descending order
    argsorted = numpy.argsort(normscore)[::-1]     
    sortedscore = normscore[argsorted]

    return argsorted[0:num_returns], sortedscore[0:num_returns]
github pyscf / pyscf / symm / addons.py View on Github external
nmo = mo.shape[1]
    if s is None:
        s = mol.intor_symmetric('int1e_ovlp')
    mo_s = numpy.dot(mo.T, s)
    norm = numpy.zeros((len(irrep_name), nmo))
    for i, csym in enumerate(symm_orb):
        moso = numpy.dot(mo_s, csym)
        ovlpso = reduce(numpy.dot, (csym.T, s, csym))
        try:
            norm[i] = numpy.einsum('ik,ki->i', moso, lib.cho_solve(ovlpso, moso.T))
        except:
            ovlpso[numpy.diag_indices(csym.shape[1])] += 1e-12
            norm[i] = numpy.einsum('ik,ki->i', moso, lib.cho_solve(ovlpso, moso.T))
    norm /= numpy.sum(norm, axis=0)  # for orbitals which are not normalized
    iridx = numpy.argmax(norm, axis=0)
    orbsym = numpy.asarray([irrep_name[i] for i in iridx])
    logger.debug(mol, 'irreps of each MO %s', orbsym)
    if check:
        largest_norm = norm[iridx,numpy.arange(nmo)]
        orbidx = numpy.where(largest_norm < 1-tol)[0]
        if orbidx.size > 0:
            idx = numpy.where(largest_norm < 1-tol*1e2)[0]
            if idx.size > 0:
                raise ValueError('orbitals %s not symmetrized, norm = %s' %
                                 (idx, largest_norm[idx]))
            else:
                logger.warn(mol, 'orbitals %s not strictly symmetrized.',
                            numpy.unique(orbidx))
                logger.warn(mol, 'They can be symmetrized with '
                            'pyscf.symm.symmetrize_space function.')
                logger.debug(mol, 'norm = %s', largest_norm[orbidx])
    return orbsym
github oemof / oemof-tabular / src / oemof / tabular / tools / geometry.py View on Github external
orig = list(map(reproject, orig))

    if prep_first:
        orig_prepped = list(map(prep, orig))
    else:
        orig_prepped = orig

    transfer = sparse.lil_matrix((len(dest), len(orig)), dtype=np.float)
    for i, j in product(range(len(dest)), range(len(orig))):
        if orig_prepped[j].intersects(dest[i]):
            area = orig[j].intersection(dest[i]).area
            transfer[i, j] = area / dest[i].area

    # sum of input vectors must be preserved
    if normed:
        ssum = np.squeeze(np.asarray(transfer.sum(axis=0)), axis=0)
        for i, j in zip(*transfer.nonzero()):
            transfer[i, j] /= ssum[j]

    return transfer
github TsiakasK / sequence-learning / Data Analysis / normalize_engagement_signal.py View on Github external
def normalize_by_range(x, nmin = 0, nmax = 1):
	x = np.asarray(x)
	return (nmax-nmin)*(x-min(x))/(max(x)-min(x)) + nmin
github andrewcron / dpmix / src / cuda_functions.py View on Github external
def gpu_sweep_col_div(X, y):
    """ X / y = X across the columns """
    if type(X) == GPUArray:
        gX = X
    else:
        gX = to_gpu(np.asarray(X, dtype=np.float32))

    if type(y) == GPUArray:
        gy = y
    else:
        gy = to_gpu(np.asarray(y, dtype=np.float32))

    dims = np.asarray(X.shape, dtype=np.int32)
    if devinfo.max_block_threads >= 1024:
        blocksize = 32
    else:
        blocksize = 16

    gridsize = int(dims[0] / blocksize) + 1
    shared = 4*blocksize

    if gX.flags.c_contiguous:
        func = CUDA_Kernels.get_function("sweep_columns_div")
    else:
        func = CUDA_Kernels.get_function("sweep_columns_div_cm")

    func(gX, gy, dims[0], dims[1], block=(blocksize, blocksize, 1),
         grid = (gridsize, 1), shared = shared)
github donghaozhang / Fast_Segmentation / ptsemseg / loader / pascal_voc_loader.py View on Github external
def get_pascal_labels(self):
        return np.asarray([[0,0,0], [128,0,0], [0,128,0], [128,128,0], [0,0,128], [128,0,128],
                              [0,128,128], [128,128,128], [64,0,0], [192,0,0], [64,128,0], [192,128,0],
                              [64,0,128], [192,0,128], [64,128,128], [192,128,128], [0, 64,0], [128, 64, 0],
                              [0,192,0], [128,192,0], [0,64,128]])
github unidesigner / pyconto / pyconto / bct / measures.py View on Github external
Parameters
    ----------

    cmatrix : connection/adjacency matrix
    
    Returns
    -------
    Min : matching index for incoming connections
    
    """
    m = bct.to_gslm(cmatrix.tolist())
    mi = bct.matching_ind_in(m)
    minp = bct.from_gsl(mi)
    bct.gsl_free(m)
    bct.gsl_free(mi)
    return np.asarray(minp)
github lgalke / vec4ir / vec4ir / base.py View on Github external
for qid, r in qids_rs:
        gold = harvest(Y, qid)
        gold_topk = gold[argtopk(gold, k)]
        R = np.count_nonzero(gold_topk)
        # real ndcg
        idcg = rm.dcg_at_k(gold_topk, k)
        ndcg = rm.dcg_at_k(r, k) / idcg
        values["ndcg"].append(ndcg)
        # Verified

        # MAP@k
        ap = rm.average_precision(r)
        values["MAP"].append(ap)

        # MRR - compute by hand
        ind = np.asarray(r).nonzero()[0]
        mrr = (1. / (ind[0] + 1)) if ind.size else 0.
        values["MRR"].append(mrr)

        # R precision
        # R = min(R, k)  # ok lets be fair.. you cant get more than k
        # we dont need that anymore, since we chop of the remainder
        # before computing R
        recall = rm.recall(r, R)
        values["recall"].append(recall)

        # precision = rm.precision_at_k(pad(scored_result, k), k)
        precision = rm.precision(r)
        values["precision"].append(precision)

        f1 = f1_score(precision, recall)
        values["f1_score"].append(f1)