Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# we add one above because we include the last point in the profile
# (in contrast to standard numpy indexing)
line_col = np.linspace(src_col, dst_col, length)
line_row = np.linspace(src_row, dst_row, length)
data = np.zeros((2, length, int(linewidth)))
data[0, :, :] = np.tile(line_col, [linewidth, 1]).T
data[1, :, :] = np.tile(line_row, [linewidth, 1]).T
if linewidth != 1:
# we subtract 1 from linewidth to change from pixel-counting
# (make this line 3 pixels wide) to point distances (the
# distance between pixel centers)
col_width = (linewidth - 1) * np.sin(-theta) / 2
row_width = (linewidth - 1) * np.cos(theta) / 2
row_off = np.linspace(-row_width, row_width, linewidth)
col_off = np.linspace(-col_width, col_width, linewidth)
data[0, :, :] += np.tile(col_off, [length, 1])
data[1, :, :] += np.tile(row_off, [length, 1])
return data
dataImport = dataImport = rawData(dir_data)
dataImport.ascii2ncdf(dem_file, dem_out)
"""
#meta information
header = self.asciiDemHeader(demAsciif)
ncol = int(re.findall(r'\d+', header[0])[0])
nrow = int(re.findall(r'\d+', header[1])[0])
xllcorner = float(re.findall(r'\d+\.\d+', header[2])[0])
yllcorner = float(re.findall(r'\d+\.\d+', header[3])[0])
cellsize = float(re.findall(r'\d+\.\d+', header[4])[0])
#get variables
ele = self.asciiDemEle(demAsciif)# elevation
lats = np.linspace(yllcorner, yllcorner+cellsize*nrow,
nrow, endpoint= True)# latitude
lons = np.linspace(xllcorner, xllcorner+cellsize*ncol,
ncol, endpoint= True)# lontitude
#create nc file
nc_root = nc.Dataset(dem_out ,'w', format = 'NETCDF4_CLASSIC')
#create dimensions
nc_root.createDimension('lat', nrow)
nc_root.createDimension('lon', ncol)
#create variables
longitudes = nc_root.createVariable('lon', 'f4', ('lon'))
latitudes = nc_root.createVariable('lat', 'f4', ('lat'))
elevation = nc_root.createVariable('elevation',
'f4', ('lat', 'lon'), zlib = True)
def threaded_experiment():
"""
The threaded experiment function separates the experiment into the worker function which runs in
its own thread. While the thread is running the main (GUI) thread continues updating at a different
rate.
:return:
"""
x = np.linspace(0,2*2*np.pi,100)
f = lambda i: np.sin(i)
y = np.zeros_like(x)
y.fill(np.nan)
plt.ion()
fig, ax = plt.subplots(1,1, figsize=(6,4))
line, = plt.plot(x, y, 'ro')
plt.xlim(x.min(), x.max())
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.show()
thread = threading.Thread(target=worker, args=(x,y,f))
t0 = time()
thread.start()
plt.figure(figsize=(10,10))
plt.plot(np.real(RLbyRRg),np.imag(RLbyRRg),'*b')
plt.plot(np.real(estimatedY),np.imag(estimatedY),'r*')
foo = Dterms[1]*np.conjugate(phasor_tot_fra) + Dterms[0]
plt.plot(np.real(foo),np.imag(foo),'g*')
#print('foo=', foo)
plt.axis('equal')
#plt.axis([-0.4,0.4,-0.4,0.4])
plt.axhline(0,color='k',linestyle='--')
plt.axvline(0,color='k',linestyle='--')
plt.grid(which='both')
plt.show()
rhs = np.conjugate(1./gr2)*(frac_pol*np.conjugate(phasor_fra2) + Dterms[0]*np.conjugate(phasor_tot_fra) +Dterms[1])
plt.figure(figsize=(10,10))
t = np.linspace(0,2*np.pi,128)
plt.plot(np.real(RLbyRR),np.imag(RLbyRR),'*b')
plt.plot(np.real(rhs),np.imag(rhs),'r*')
plt.axis('equal')
#plt.axis([-0.4,0.4,-0.4,0.4])
plt.axhline(0,color='k',linestyle='--')
plt.axvline(0,color='k',linestyle='--')
plt.grid(which='both')
plt.show()
#print('r =', r2)
#print('r_m =', np.sqrt(x2**2+y2**2))
#print('x_m =', x2)
#print('y_m =', y2)
return Dterms
def monotonic(arr, start, end):
# Make sure an array is monotonically decreasing from the start to the end.
a0 = arr[start]
i0 = start
if end > start:
i = start+1
while i < end:
if arr[i] < a0:
arr[i0:i+1] = np.linspace(a0, arr[i], i-i0+1)
a0 = arr[i]
i0 = i
i += 1
if end < start:
i = start-1
while i >= end:
if arr[i] < a0:
arr[i:i0+1] = np.linspace(arr[i], a0, i0-i+1)
a0 = arr[i]
i0 = i
i -= 1
"""
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import kalmann
# Get some noisy training data classifications, spirals!
n = 100
stdev = 0.2
U = np.zeros((n*3, 2))
Y = np.zeros((n*3, 1), dtype='uint8')
for j in xrange(3):
ix = range(n*j, n*(j+1))
r = np.linspace(0, 1, n)
t = np.linspace(j*4, (j+1)*4, n) + np.random.normal(0, stdev, n)
U[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
Y[-20:-18] = 0
# Create two identical KNN's that will be trained differently
knn_ekf = kalmann.KNN(nu=2, ny=1, nl=10, neuron='logistic')
knn_sgd = kalmann.KNN(nu=2, ny=1, nl=10, neuron='logistic')
# Train
nepochs_ekf = 100
nepochs_sgd = 200
knn_ekf.train(nepochs=nepochs_ekf, U=U, Y=Y, method='ekf', P=0.2, Q=0, R=stdev**2, pulse_T=2)
knn_sgd.train(nepochs=nepochs_sgd, U=U, Y=Y, method='sgd', step=0.1, pulse_T=2)
# Use the KNNs as classifiers
F_ekf = knn_ekf.classify(U, high=2, low=0)
# angle between z and null
angle = np.arccos(np.dot(zaxis, orientation))
eye = np.eye(3, dtype=np.float64)
raxis2 = np.outer(raxis, raxis)
skew = np.array([[0, raxis[2], -raxis[1]],
[-raxis[2], 0, raxis[0]],
[raxis[1], -raxis[0], 0]])
rotmtx = (raxis2 + np.cos(angle) * (eye - raxis2) +
np.sin(angle) * skew)
# make uv sphere that is aligned with z-axis
ntheta, nphi = 100, 100
u = np.linspace(0, 2 * np.pi, nphi)
v = np.linspace(0, np.pi, ntheta)
x = np.outer(np.cos(u), np.sin(v))
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones(np.size(u)), np.cos(v))
# ravel point array and rotate them to the null axis
points = np.vstack((x.flatten(), y.flatten(), z.flatten()))
points = np.dot(rotmtx, points)
return points
def __init__(self, edges):
self._fNbins = len(edges) - 1
self._fXmin = edges[0]
self._fXmax = edges[-1]
if numpy.array_equal(edges, numpy.linspace(self._fXmin, self._fXmax, len(edges), dtype=edges.dtype)):
self._fXbins = numpy.array([], dtype=">f8")
else:
self._fXbins = edges.astype(">f8")
def _prepare(self, path, labels, split):
gap, test_gap = 4, self.test_gap
datadir = path
image_paths, targets, ids, times = [], [], [], []
for i, (vid, label) in enumerate(labels.items()):
iddir = datadir + '/' + vid
lines = glob(iddir + '/*.jpg')
n = len(lines)
if i % 1000 == 0:
print("{} {}".format(i, iddir))
if n == 0:
continue
if split == 'val_video':
spacing = np.linspace(0, n - 1, test_gap)
else:
spacing = range(0, n - 1, gap)
target = torch.IntTensor(self.num_classes).zero_()
target[int(label['class'])] = 1
for loc in spacing:
ii = np.floor(loc)
impath = '{}/{}-{:06d}.jpg'.format(iddir, vid, ii + 1)
image_paths.append(impath)
targets.append(target)
ids.append(vid)
times.append(ii + 1)
return {'image_paths': image_paths, 'targets': targets, 'ids': ids, 'times': times}
def discrete_cmap(ndiv, base_cmap=None):
"""Create an n-div discrete colormap from the specified input map"""
base = plt.cm.get_cmap(base_cmap)
color_list = base(numpy.linspace(1 - (1 / ndiv), 1 / ndiv, ndiv))
color_list[3] = [.918, .918, .918, 1.]
#For edge colors retrieving: 0 is for max, 1 is for min, 2 is for min label
down_up = [base(numpy.linspace(1 - (0.2 / ndiv), 0.2 / ndiv, ndiv))[0],
base(numpy.linspace(1 - (0.2 / ndiv), 0.2 / ndiv, ndiv))[-1],
base(numpy.linspace(1 - (0.2 / ndiv), 0.2 / ndiv, ndiv))[-1]]
cmap_name = base.name + str(ndiv)
return [clr.LinearSegmentedColormap.from_list(cmap_name, color_list, ndiv),
down_up[0], down_up[1], down_up[2]]