Find, fix and prevent vulnerabilities in your code.
critical severity
- Vulnerable module: handlebars
- Introduced through: handlebars@4.0.14
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › handlebars@4.0.14Remediation: Upgrade to handlebars@4.5.3.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Prototype Pollution. It is possible to add or modify properties to the Object prototype through a malicious template. This may allow attackers to crash the application or execute Arbitrary Code in specific conditions.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade handlebars to version 3.0.8, 4.5.3 or higher.
References
critical severity
- Vulnerable module: form-data
- Introduced through: request@2.88.2
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › request@2.88.2 › form-data@2.3.3
Overview
Affected versions of this package are vulnerable to Predictable Value Range from Previous Values via the boundary value, which uses Math.random(). An attacker can manipulate HTTP request boundaries by exploiting predictable values, potentially leading to HTTP parameter pollution.
Remediation
Upgrade form-data to version 2.5.4, 3.0.4, 4.0.4 or higher.
References
critical severity
- Vulnerable module: hawk
- Introduced through: hapi-auth-hawk@3.0.1 and hawk@6.0.2
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-auth-hawk@3.0.1 › hawk@3.1.3
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hawk@6.0.2
Overview
hawk is a library for the HTTP Hawk Authentication Scheme.
Affected versions of this package are vulnerable to Authentication Bypass. The incoming (client supplied) hash of the payload is trusted by the server and not verified before the signature is calculated.
A malicious actor in the middle can alter the payload and the server side will not identify the modification occurred because it simply uses the client provided value instead of verify the hash provided against the modified payload.
According to the maintainers this issue is to be considered out of scope as "payload hash validation is optional and up to developer to implement".
Remediation
There is no fixed version for hawk.
References
high severity
- Vulnerable module: ajv
- Introduced through: eslint@3.19.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › eslint@3.19.0 › table@3.8.3 › ajv@4.11.8Remediation: Upgrade to eslint@4.0.0.
Overview
ajv is an Another JSON Schema Validator
Affected versions of this package are vulnerable to Prototype Pollution. A carefully crafted JSON schema could be provided that allows execution of other code by prototype pollution. (While untrusted schemas are recommended against, the worst case of an untrusted schema should be a denial of service, not execution of code.)
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade ajv to version 6.12.3 or higher.
References
high severity
- Vulnerable module: handlebars
- Introduced through: handlebars@4.0.14
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › handlebars@4.0.14Remediation: Upgrade to handlebars@4.5.3.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Arbitrary Code Execution. The package's lookup helper doesn't validate templates correctly, allowing attackers to submit templates that execute arbitrary JavaScript in the system.
PoC
{{#with split as |a|}}
{{pop (push "alert('Vulnerable Handlebars JS');")}}
{{#with (concat (lookup join (slice 0 1)))}}
{{#each (slice 2 3)}}
{{#with (apply 0 a)}}
{{.}}
{{/with}}
{{/each}}
{{/with}}
{{/with}}
{{/with}}
Remediation
Upgrade handlebars to version 3.0.8, 4.5.3 or higher.
References
high severity
- Vulnerable module: ammo
- Introduced through: hapi@16.8.4, inert@4.0.4 and others
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi@16.8.4 › ammo@2.1.2
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › inert@4.0.4 › ammo@2.1.2
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › glue@4.2.1 › hapi@16.8.4 › ammo@2.1.2
Overview
ammo is a HTTP Range processing utilities.
Note This package is deprecated and is now maintained as @hapi/ammo.
Affected versions of this package are vulnerable to Denial of Service (DoS). The Range HTTP header parser has a vulnerability which will cause the function to throw a system error if the header is set to an invalid value. Because hapi is not expecting the function to ever throw, the error is thrown all the way up the stack. If no unhandled exception handler is available, the application will exist, allowing an attacker to shut down services.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
There is no fixed version for ammo.
References
high severity
- Vulnerable module: async
- Introduced through: acquaint@1.4.1 and disinfect@0.2.1
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › acquaint@1.4.1 › async@2.1.5
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › disinfect@0.2.1 › async@2.0.1Remediation: Upgrade to disinfect@1.0.0.
Overview
Affected versions of this package are vulnerable to Prototype Pollution via the mapValues() method, due to improper check in createObjectIterator function.
PoC
//when objects are parsed, all properties are created as own (the objects can come from outside sources (http requests/ file))
const hasOwn = JSON.parse('{"__proto__": {"isAdmin": true}}');
//does not have the property, because it's inside object's own "__proto__"
console.log(hasOwn.isAdmin);
async.mapValues(hasOwn, (val, key, cb) => cb(null, val), (error, result) => {
// after the method executes, hasOwn.__proto__ value (isAdmin: true) replaces the prototype of the newly created object, leading to potential exploits.
console.log(result.isAdmin);
});
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade async to version 2.6.4, 3.2.2 or higher.
References
high severity
- Vulnerable module: handlebars
- Introduced through: handlebars@4.0.14
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › handlebars@4.0.14Remediation: Upgrade to handlebars@4.4.5.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Denial of Service (DoS). The package's parser may be forced into an endless loop while processing specially-crafted templates, which may allow attackers to exhaust system resources leading to Denial of Service.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade handlebars to version 4.4.5 or higher.
References
high severity
- Vulnerable module: hapi
- Introduced through: hapi@16.8.4 and glue@4.2.1
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi@16.8.4
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › glue@4.2.1 › hapi@16.8.4
Overview
hapi is a HTTP Server framework.
Affected versions of this package are vulnerable to Denial of Service (DoS). The CORS request handler has a vulnerability which will cause the function to throw a system error if the header contains some invalid values. If no unhandled exception handler is available, the application will exist, allowing an attacker to shut down services.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
There is no fixed version for hapi.
References
high severity
- Vulnerable module: lodash
- Introduced through: hapi-ioredis@2.2.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-ioredis@2.2.0 › ioredis@1.15.1 › lodash@3.10.1Remediation: Upgrade to hapi-ioredis@2.3.0.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution through the zipObjectDeep function due to improper user input sanitization in the baseZipObject function.
PoC
lodash.zipobjectdeep:
const zipObjectDeep = require("lodash.zipobjectdeep");
let emptyObject = {};
console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined
zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function
console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true
lodash:
const test = require("lodash");
let emptyObject = {};
console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined
test.zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function
console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash to version 4.17.17 or higher.
References
high severity
- Vulnerable module: moment
- Introduced through: good-console@6.4.1
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › good-console@6.4.1 › moment@2.19.4Remediation: Upgrade to good-console@8.0.0.
Overview
moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.
Affected versions of this package are vulnerable to Directory Traversal when a user provides a locale string which is directly used to switch moment locale.
Details
A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.
Directory Traversal vulnerabilities can be generally divided into two types:
- Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.
st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.
If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.
curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa
Note %2e is the URL encoded version of . (dot).
- Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as
Zip-Slip.
One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.
The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:
2018-04-15 22:04:29 ..... 19 19 good.txt
2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys
Remediation
Upgrade moment to version 2.29.2 or higher.
References
high severity
- Vulnerable module: moment
- Introduced through: good-console@6.4.1
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › good-console@6.4.1 › moment@2.19.4Remediation: Upgrade to good-console@8.0.0.
Overview
moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the preprocessRFC2822() function in from-string.js, when processing a very long crafted string (over 10k characters).
PoC:
moment("(".repeat(500000))
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade moment to version 2.29.4 or higher.
References
high severity
- Vulnerable module: subtext
- Introduced through: hapi@16.8.4 and glue@4.2.1
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi@16.8.4 › subtext@5.1.3
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › glue@4.2.1 › hapi@16.8.4 › subtext@5.1.3
Overview
subtext is a HTTP payload parsing library. Deprecated. Note: This package is deprecated and is now maintained as @hapi/subtext
Affected versions of this package are vulnerable to Denial of Service (DoS).
The package fails to enforce the maxBytes configuration for payloads with chunked encoding that are written to the file system. This allows attackers to send requests with arbitrary payload sizes, which may exhaust system resources.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
Remediation
There is no fixed version for subtext.
References
high severity
- Vulnerable module: subtext
- Introduced through: hapi@16.8.4 and glue@4.2.1
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi@16.8.4 › subtext@5.1.3
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › glue@4.2.1 › hapi@16.8.4 › subtext@5.1.3
Overview
subtext is a HTTP payload parsing library. Deprecated. Note: This package is deprecated and is now maintained as @hapi/subtext
Affected versions of this package are vulnerable to Denial of Service (DoS). The Content-Encoding HTTP header parser has a vulnerability which will cause the function to throw a system error if the header contains some invalid values. Because hapi rethrows system errors (as opposed to catching expected application errors), the error is thrown all the way up the stack. If no unhandled exception handler is available, the application will exist, allowing an attacker to shut down services.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
There is no fixed version for subtext.
References
high severity
- Vulnerable module: useragent
- Introduced through: scooter@4.0.2
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › scooter@4.0.2 › useragent@2.3.0
Overview
useragent allows you to parse user agent string with high accuracy by using hand tuned dedicated regular expressions for browser matching.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when passing long user-agent strings.
This is due to incomplete fix for this vulnerability: https://snyk.io/vuln/SNYK-JS-USERAGENT-11000.
An attempt to fix the vulnerability has been pushed to master.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
A fix was pushed into the master branch but not yet published.
References
high severity
- Vulnerable module: hawk
- Introduced through: hapi-auth-hawk@3.0.1 and hawk@6.0.2
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-auth-hawk@3.0.1 › hawk@3.1.3
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hawk@6.0.2Remediation: Upgrade to hawk@9.0.1.
Overview
hawk is a library for the HTTP Hawk Authentication Scheme.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in header parsing where each added character in the attacker's input increases the computation time exponentially.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade hawk to version 9.0.1 or higher.
References
high severity
- Vulnerable module: handlebars
- Introduced through: handlebars@4.0.14
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › handlebars@4.0.14Remediation: Upgrade to handlebars@4.3.0.
Overview
handlebars is a extension to the Mustache templating language.
Affected versions of this package are vulnerable to Prototype Pollution.
Templates may alter an Object's __proto__ and __defineGetter__ properties, which may allow an attacker to execute arbitrary code on the server through crafted payloads.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade handlebars to version 4.3.0, 3.0.8 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: hapi-ioredis@2.2.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-ioredis@2.2.0 › ioredis@1.15.1 › lodash@3.10.1Remediation: Upgrade to hapi-ioredis@2.3.0.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The function defaultsDeep could be tricked into adding or modifying properties of Object.prototype using a constructor payload.
PoC by Snyk
const mergeFn = require('lodash').defaultsDeep;
const payload = '{"constructor": {"prototype": {"a0": true}}}'
function check() {
mergeFn({}, JSON.parse(payload));
if (({})[`a0`] === true) {
console.log(`Vulnerable to Prototype Pollution via ${payload}`);
}
}
check();
For more information, check out our blog post
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash to version 4.17.12 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: hapi-ioredis@2.2.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-ioredis@2.2.0 › ioredis@1.15.1 › lodash@3.10.1Remediation: Upgrade to hapi-ioredis@2.3.0.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution via the set and setwith functions due to improper user input sanitization.
PoC
lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash to version 4.17.17 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: hapi-ioredis@2.2.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-ioredis@2.2.0 › ioredis@1.15.1 › lodash@3.10.1Remediation: Upgrade to hapi-ioredis@2.3.0.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The functions merge, mergeWith, and defaultsDeep could be tricked into adding or modifying properties of Object.prototype. This is due to an incomplete fix to CVE-2018-3721.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash to version 4.17.11 or higher.
References
high severity
- Vulnerable module: subtext
- Introduced through: hapi@16.8.4 and glue@4.2.1
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi@16.8.4 › subtext@5.1.3
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › glue@4.2.1 › hapi@16.8.4 › subtext@5.1.3
Overview
subtext is a HTTP payload parsing library. Deprecated. Note: This package is deprecated and is now maintained as @hapi/subtext
Affected versions of this package are vulnerable to Prototype Pollution. A multipart payload can be constructed in a way that one of the parts’ content can be set as the entire payload object’s prototype. If this prototype contains data, it may bypass other validation rules which enforce access and privacy. If this prototype evaluates to null, it can cause unhandled exceptions when the request payload is accessed.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
There is no fixed version for subtext.
References
high severity
- Vulnerable module: lodash
- Introduced through: hapi-ioredis@2.2.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-ioredis@2.2.0 › ioredis@1.15.1 › lodash@3.10.1Remediation: Upgrade to hapi-ioredis@2.3.0.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Code Injection via template.
PoC
var _ = require('lodash');
_.template('', { variable: '){console.log(process.env)}; with(obj' })()
Remediation
Upgrade lodash to version 4.17.21 or higher.
References
high severity
- Vulnerable module: shelljs
- Introduced through: eslint@3.19.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › eslint@3.19.0 › shelljs@0.7.8Remediation: Upgrade to eslint@4.0.0.
Overview
shelljs is a wrapper for the Unix shell commands for Node.js.
Affected versions of this package are vulnerable to Improper Privilege Management. When ShellJS is used to create shell scripts which may be running as root, users with low-level privileges on the system can leak sensitive information such as passwords (depending on implementation) from the standard output of the privileged process OR shutdown privileged ShellJS processes via the exec function when triggering EACCESS errors.
Note: Thi only impacts the synchronous version of shell.exec().
Remediation
Upgrade shelljs to version 0.8.5 or higher.
References
high severity
- Vulnerable module: handlebars
- Introduced through: handlebars@4.0.14
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › handlebars@4.0.14Remediation: Upgrade to handlebars@4.7.7.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Remote Code Execution (RCE) when selecting certain compiling options to compile templates coming from an untrusted source.
POC
<script src="https://cdn.jsdelivr.net/npm/handlebars@latest/dist/handlebars.js"></script>
<script>
// compile the template
var s = `
{{#with (__lookupGetter__ "__proto__")}}
{{#with (./constructor.getOwnPropertyDescriptor . "valueOf")}}
{{#with ../constructor.prototype}}
{{../../constructor.defineProperty . "hasOwnProperty" ..}}
{{/with}}
{{/with}}
{{/with}}
{{#with "constructor"}}
{{#with split}}
{{pop (push "alert('Vulnerable Handlebars JS when compiling in strict mode');")}}
{{#with .}}
{{#with (concat (lookup join (slice 0 1)))}}
{{#each (slice 2 3)}}
{{#with (apply 0 ../..)}}
{{.}}
{{/with}}
{{/each}}
{{/with}}
{{/with}}
{{/with}}
{{/with}}
`;
var template = Handlebars.compile(s, {
strict: true
});
// execute the compiled template and print the output to the console console.log(template({}));
</script>
Remediation
Upgrade handlebars to version 4.7.7 or higher.
References
medium severity
- Vulnerable module: useragent
- Introduced through: scooter@4.0.2
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › scooter@4.0.2 › useragent@2.3.0
Overview
useragent is an allows you to parse user agent string with high accuracy by using hand tuned dedicated regular expressions for browser matching.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to the usage of insecure regular expressions in the regexps.js component.
PoC
var useragent = require('useragent');
var attackString = "HbbTV/1.1.1CE-HTML/1.9;THOM " + new Array(20).join("SW-Version/");
// A copy of the regular expression
var reg = /(HbbTV)\/1\.1\.1.*CE-HTML\/1\.\d;(Vendor\/)*(THOM[^;]*?)[;\s](?:.*SW-Version\/.*)*(LF[^;]+);?/;
var request = 'GET / HTTP/1.1\r\nUser-Agent: ' + attackString + '\r\n\r\n';
console.log(useragent.parse(request).device);
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
There is no fixed version for useragent.
References
medium severity
- Vulnerable module: tmp
- Introduced through: scooter@4.0.2
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › scooter@4.0.2 › useragent@2.3.0 › tmp@0.0.33
Overview
Affected versions of this package are vulnerable to Symlink Attack via the dir parameter. An attacker can cause files or directories to be written to arbitrary locations by supplying a crafted symbolic link that resolves outside the intended temporary directory.
PoC
const tmp = require('tmp');
const tmpobj = tmp.fileSync({ 'dir': 'evil-dir'});
console.log('File: ', tmpobj.name);
try {
tmp.fileSync({ 'dir': 'mydir1'});
} catch (err) {
console.log('test 1:', err.message)
}
try {
tmp.fileSync({ 'dir': '/foo'});
} catch (err) {
console.log('test 2:', err.message)
}
try {
const fs = require('node:fs');
const resolved = fs.realpathSync('/tmp/evil-dir');
tmp.fileSync({ 'dir': resolved});
} catch (err) {
console.log('test 3:', err.message)
}
Remediation
Upgrade tmp to version 0.2.4 or higher.
References
medium severity
- Vulnerable module: handlebars
- Introduced through: handlebars@4.0.14
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › handlebars@4.0.14Remediation: Upgrade to handlebars@4.6.0.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Prototype Pollution. Prototype access to the template engine allows for potential code execution.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade handlebars to version 4.6.0 or higher.
References
medium severity
- Vulnerable module: request
- Introduced through: request@2.88.2
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › request@2.88.2
Overview
request is a simplified http request client.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.
Remediation
A fix was pushed into the master branch but not yet published.
References
medium severity
- Vulnerable module: tough-cookie
- Introduced through: request@2.88.2
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › request@2.88.2 › tough-cookie@2.5.0
Overview
tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.
Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.
PoC
// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
"Slonser=polluted; Domain=__proto__; Path=/notauth",
"https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
"Auth=Lol; Domain=google.com; Path=/notauth",
"https://google.com/"
);
//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade tough-cookie to version 4.1.3 or higher.
References
medium severity
- Vulnerable module: hoek
- Introduced through: blankie@2.1.0, hapi-auth-hawk@3.0.1 and others
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › blankie@2.1.0 › hoek@2.16.3Remediation: Upgrade to blankie@3.0.0.
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-auth-hawk@3.0.1 › hoek@2.16.3Remediation: Upgrade to hapi-auth-hawk@4.0.0.
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › blankie@2.1.0 › joi@6.10.1 › hoek@2.16.3Remediation: Upgrade to blankie@3.0.0.
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-auth-hawk@3.0.1 › boom@2.10.1 › hoek@2.16.3Remediation: Upgrade to hapi-auth-hawk@4.0.0.
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-auth-hawk@3.0.1 › hawk@3.1.3 › hoek@2.16.3Remediation: Upgrade to hapi-auth-hawk@4.0.0.
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › blankie@2.1.0 › joi@6.10.1 › topo@1.1.0 › hoek@2.16.3Remediation: Upgrade to blankie@3.0.0.
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-auth-hawk@3.0.1 › hawk@3.1.3 › boom@2.10.1 › hoek@2.16.3Remediation: Upgrade to hapi-auth-hawk@4.0.0.
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-auth-hawk@3.0.1 › hawk@3.1.3 › sntp@1.0.9 › hoek@2.16.3Remediation: Upgrade to hapi-auth-hawk@4.0.0.
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-auth-hawk@3.0.1 › hawk@3.1.3 › cryptiles@2.0.5 › boom@2.10.1 › hoek@2.16.3Remediation: Upgrade to hapi-auth-hawk@4.0.0.
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › disinfect@0.2.1 › hoek@4.0.2Remediation: Upgrade to disinfect@1.0.0.
Overview
hoek is an Utility methods for the hapi ecosystem.
Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.
PoC by Olivier Arteau (HoLyVieR)
var Hoek = require('hoek');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';
var a = {};
console.log("Before : " + a.oops);
Hoek.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade hoek to version 4.2.1, 5.0.3 or higher.
References
medium severity
- Vulnerable module: lodash
- Introduced through: hapi-ioredis@2.2.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-ioredis@2.2.0 › ioredis@1.15.1 › lodash@3.10.1Remediation: Upgrade to hapi-ioredis@2.3.0.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.
PoC by Olivier Arteau (HoLyVieR)
var _= require('lodash');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';
var a = {};
console.log("Before : " + a.oops);
_.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash to version 4.17.5 or higher.
References
medium severity
- Vulnerable module: inflight
- Introduced through: acquaint@1.4.1 and eslint@3.19.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › acquaint@1.4.1 › glob@7.1.7 › inflight@1.0.6
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › eslint@3.19.0 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › eslint@3.19.0 › shelljs@0.7.8 › glob@7.2.3 › inflight@1.0.6
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › eslint@3.19.0 › file-entry-cache@2.0.0 › flat-cache@1.3.4 › rimraf@2.6.3 › glob@7.2.3 › inflight@1.0.6
Overview
Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.
Exploiting this vulnerability results in crashing the node process or in the application crash.
Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.
To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.
PoC
const inflight = require('inflight');
function testInflight() {
let i = 0;
function scheduleNext() {
let key = `key-${i++}`;
const callback = () => {
};
for (let j = 0; j < 1000000; j++) {
inflight(key, callback);
}
setImmediate(scheduleNext);
}
if (i % 100 === 0) {
console.log(process.memoryUsage());
}
scheduleNext();
}
testInflight();
Remediation
There is no fixed version for inflight.
References
medium severity
- Vulnerable module: handlebars
- Introduced through: handlebars@4.0.14
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › handlebars@4.0.14Remediation: Upgrade to handlebars@4.7.7.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Prototype Pollution when selecting certain compiling options to compile templates coming from an untrusted source.
POC
<script src="https://cdn.jsdelivr.net/npm/handlebars@latest/dist/handlebars.js"></script>
<script>
// compile the template
var s2 = `{{'a/.") || alert("Vulnerable Handlebars JS when compiling in compat mode'}}`;
var template = Handlebars.compile(s2, {
compat: true
});
// execute the compiled template and print the output to the console console.log(template({}));
</script>
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade handlebars to version 4.7.7 or higher.
References
medium severity
- Vulnerable module: minimist
- Introduced through: handlebars@4.0.14
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › handlebars@4.0.14 › optimist@0.6.1 › minimist@0.0.10
Overview
minimist is a parse argument options module.
Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a constructor or __proto__ payload.
PoC by Snyk
require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true
require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade minimist to version 0.2.1, 1.2.3 or higher.
References
medium severity
- Vulnerable module: yargs-parser
- Introduced through: confidence@3.0.2
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › confidence@3.0.2 › yargs@4.8.1 › yargs-parser@2.4.1Remediation: Upgrade to confidence@4.0.2.
Overview
yargs-parser is a mighty option parser used by yargs.
Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a __proto__ payload.
Our research team checked several attack vectors to verify this vulnerability:
- It could be used for privilege escalation.
- The library could be used to parse user input received from different sources:
- terminal emulators
- system calls from other code bases
- CLI RPC servers
PoC by Snyk
const parser = require("yargs-parser");
console.log(parser('--foo.__proto__.bar baz'));
console.log(({}).bar);
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade yargs-parser to version 5.0.1, 13.1.2, 15.0.1, 18.1.1 or higher.
References
medium severity
- Vulnerable module: lodash
- Introduced through: hapi-ioredis@2.2.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-ioredis@2.2.0 › ioredis@1.15.1 › lodash@3.10.1Remediation: Upgrade to hapi-ioredis@2.3.0.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber, trim and trimEnd functions.
POC
var lo = require('lodash');
function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret + "1";
}
var s = build_blank(50000)
var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0)
var time1 = Date.now();
lo.toNumber(s)
var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1)
var time2 = Date.now();
lo.trimEnd(s)
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2)
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade lodash to version 4.17.21 or higher.
References
medium severity
- Vulnerable module: lodash
- Introduced through: hapi-ioredis@2.2.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-ioredis@2.2.0 › ioredis@1.15.1 › lodash@3.10.1Remediation: Upgrade to hapi-ioredis@2.3.0.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It parses dates using regex strings, which may cause a slowdown of 2 seconds per 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade lodash to version 4.17.11 or higher.
References
medium severity
- Vulnerable module: ioredis
- Introduced through: hapi-ioredis@2.2.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › hapi-ioredis@2.2.0 › ioredis@1.15.1
Overview
ioredis is a Redis client for Node.js.
Affected versions of this package are vulnerable to Prototype Pollution. The reply transformer which is applied does not check for special field names. This only impacts applications that are directly allowing user-provided field names.
PoC
// Redis server running on localhost
const Redis = require("ioredis");
const client = new Redis();
async function f1() {
await client.hset('test_key', ['__proto__', 'hello']);
console.log('hget:', await client.hget('test_key', '__proto__')); // "hello"
console.log('hgetall:', await client.hgetall('test_key')); // does not include __proto__: hello
}
f1();
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade ioredis to version 4.27.8 or higher.
References
low severity
- Vulnerable module: eslint
- Introduced through: eslint@3.19.0
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › eslint@3.19.0Remediation: Upgrade to eslint@4.18.2.
Overview
eslint is a pluggable linting utility for JavaScript and JSX
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). This can cause an impact of about 10 seconds matching time for data 100k characters long.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade eslint to version 4.18.2 or higher.
References
low severity
- Vulnerable module: minimist
- Introduced through: handlebars@4.0.14
Detailed paths
-
Introduced through: hapi-login-test@identityclash/hapi-login-test#c8f82d846ed70f81aae5bc602a712455e8cc03c3 › handlebars@4.0.14 › optimist@0.6.1 › minimist@0.0.10
Overview
minimist is a parse argument options module.
Affected versions of this package are vulnerable to Prototype Pollution due to a missing handler to Function.prototype.
Notes:
This vulnerability is a bypass to CVE-2020-7598
The reason for the different CVSS between CVE-2021-44906 to CVE-2020-7598, is that CVE-2020-7598 can pollute objects, while CVE-2021-44906 can pollute only function.
PoC by Snyk
require('minimist')('--_.constructor.constructor.prototype.foo bar'.split(' '));
console.log((function(){}).foo); // bar
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade minimist to version 0.2.4, 1.2.6 or higher.