Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def verify_img_data(img_data, mode):
if mode is None:
img = transforms.ToPILImage()(img_data)
assert img.mode == 'RGB' # default should assume RGB
else:
img = transforms.ToPILImage(mode=mode)(img_data)
assert img.mode == mode
split = img.split()
for i in range(3):
assert np.allclose(img_data[:, :, i], split[i])
def verify_img_data(img_data, mode):
if mode is None:
img = transforms.ToPILImage()(img_data)
assert img.mode == 'RGB' # default should assume RGB
else:
img = transforms.ToPILImage(mode=mode)(img_data)
assert img.mode == mode
split = img.split()
for i in range(3):
assert np.allclose(img_data[:, :, i], split[i])
def test_coarse_dropout(self):
if not os.path.exists(self.test_images_write_path + 'test_coarse_dropout'):
os.mkdir(self.test_images_write_path + 'test_coarse_dropout')
data_loader = self.get_data_loader()
count = 0
for data in data_loader:
image, labels = data
image_to_save = transforms.ToPILImage()(image['rgb'][count][0].cpu())
image_to_save.save(os.path.join(self.test_images_write_path + 'test_coarse_dropout',
str(count)+'b.png'))
result = coarse_dropout_random(count, image['rgb'])
image_to_save = transforms.ToPILImage()(result[count].cpu())
image_to_save.save(os.path.join(self.test_images_write_path + 'test_coarse_dropout',
str(count)+'.png'))
count += 1
batch_size = 8
net = PSPNet(pretrained=False, num_classes=num_classes, input_size=(512, 1024)).cuda()
snapshot = 'epoch_48_validation_loss_5.1326_mean_iu_0.3172_lr_0.00001000.pth'
net.load_state_dict(torch.load(os.path.join(ckpt_path, snapshot)))
net.eval()
mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
transform = transforms.Compose([
expanded_transform.FreeScale((512, 1024)),
transforms.ToTensor(),
transforms.Normalize(*mean_std)
])
restore = transforms.Compose([
expanded_transform.DeNormalize(*mean_std),
transforms.ToPILImage()
])
lsun_path = '/home/b3-542/LSUN'
dataset = LSUN(lsun_path, ['tower_val', 'church_outdoor_val', 'bridge_val'], transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=16, shuffle=True)
if not os.path.exists(predict_path):
os.mkdir(predict_path)
for vi, data in enumerate(dataloader, 0):
inputs, labels = data
inputs = Variable(inputs, volatile=True).cuda()
outputs = net(inputs)
prediction = outputs.cpu().data.max(1)[1].squeeze_(1).numpy()
import torchvision.transforms as transforms
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transform = transforms.Compose([
transforms.ToPILImage('RGB'),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(size=[32,32], padding=4),
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([
transforms.ToPILImage('RGB'),
transforms.ToTensor(),
normalize,
])
return train_transform, test_transform
# Create model
if not os.path.exists(MODEL_PATH):
os.makedirs(MODEL_PATH)
if not os.path.exists(WORK_DIR + '/' + 'gen'):
os.makedirs(WORK_DIR + '/' + 'gen')
transform = transforms.Compose([
transforms.Grayscale(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
to_pil_image = transforms.ToPILImage()
# mnist train_dataset
train_dataset = torchvision.datasets.ImageFolder(root=WORK_DIR + '/' + 'train',
transform=transform)
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=BATCH_SIZE,
shuffle=True)
# first train run this line
# D = Discriminator().to(device)
# G = Generator().to(device)
# load model
if torch.cuda.is_available():
D = torch.load(MODEL_PATH + 'D.pth').to(device)
pred = result.data.cpu().numpy()
if inx == 1:
pred = aug_HFlip(image=pred)['image']
# elif inx == 2:
# pred = aug_Rot90(image=pred)['image']
pred = pred.T
tta_preds.append(pred)
inx += 1
# print (pred.shape)
pred = np.mean(tta_preds, axis=0)
out_cut = np.copy(pred)
res = transforms.ToPILImage()(out_cut)
res = np.asarray(res.resize((1024, 1024), resample=Image.BILINEAR))
total_preds[index,:,:] += res
if not os.path.exists(model_name+'_out_all_folds/'):
os.makedirs(model_name+'_out_all_folds/')
threshold_list = [1.4]
# threshold_list = [1.2, 1.4, 1.5, 2]
# threshold = 1.5
for threshold in threshold_list:
sublist = []
for index, row in tqdm.tqdm(sample_df.iterrows(), total=len(sample_df)):
import torchvision
import torchvision.datasets as dset
import torchvision.transforms as transf
import torchvision.models as models
import torchvision.utils as vutils
import torch.nn.utils.spectral_norm as spectral_norm
if param.cuda:
import torch.backends.cudnn as cudnn
cudnn.deterministic = True
cudnn.benchmark = True
# To see images
from IPython.display import Image
to_img = transf.ToPILImage()
import pytorch_visualize as pv
import math
torch.utils.backcompat.broadcast_warning.enabled=True
from fid import calculate_fid_given_paths as calc_fid
#from inception import get_inception_score
#from inception import load_images
## Setting seed
import random
if param.seed is None:
param.seed = random.randint(1, 10000)
print(f"Random Seed: {param.seed}")
def main():
global args, best_prec1
args = parser.parse_args()
if args.tensorboard: configure("runs/%s"%(args.name))
# Data loading code
normalize = transforms.Normalize(mean=[x/255.0 for x in [125.3, 123.0, 113.9]],
std=[x/255.0 for x in [63.0, 62.1, 66.7]])
if args.augment:
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: F.pad(
Variable(x.unsqueeze(0), requires_grad=False, volatile=True),
(4,4,4,4),mode='reflect').data.squeeze()),
transforms.ToPILImage(),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
else:
transform_train = transforms.Compose([
transforms.ToTensor(),
normalize,
])
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize
])
kwargs = {'num_workers': 1, 'pin_memory': True}
mean = [0.429, 0.431, 0.397]
std = [1, 1, 1]
normalize = transforms.Normalize(mean=mean,
std=std)
negmean = [x * -1 for x in mean]
revNormalize = transforms.Normalize(mean=negmean, std=std)
# Temporary fix for issue #7 https://github.com/avinashpaliwal/Super-SloMo/issues/7 -
# - Removed per channel mean subtraction for CPU.
if (device == "cpu"):
transform = transforms.Compose([transforms.ToTensor()])
TP = transforms.Compose([transforms.ToPILImage()])
else:
transform = transforms.Compose([transforms.ToTensor(), normalize])
TP = transforms.Compose([revNormalize, transforms.ToPILImage()])
# Load data
videoFrames = dataloader.Video(root=extractionPath, transform=transform)
videoFramesloader = torch.utils.data.DataLoader(videoFrames, batch_size=args.batch_size, shuffle=False)
# Initialize model
flowComp = model.UNet(6, 4)
flowComp.to(device)
for param in flowComp.parameters():
param.requires_grad = False
ArbTimeFlowIntrp = model.UNet(20, 5)
ArbTimeFlowIntrp.to(device)
for param in ArbTimeFlowIntrp.parameters():
param.requires_grad = False
flowBackWarp = model.backWarp(videoFrames.dim[0], videoFrames.dim[1], device)