Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
testImage_maine = utils.load_image("content_imgs/maine.jpg")
testImage_maine = img_transform_512(testImage_maine)
testImage_maine = Variable(testImage_maine.repeat(1, 1, 1, 1), requires_grad=False).type(dtype)
# define network
image_transformer = ImageTransformNet().type(dtype)
optimizer = Adam(image_transformer.parameters(), LEARNING_RATE)
loss_mse = torch.nn.MSELoss()
# load vgg network
vgg = Vgg16().type(dtype)
# get training dataset
dataset_transform = transforms.Compose([
transforms.Scale(IMAGE_SIZE), # scale shortest side to image_size
transforms.CenterCrop(IMAGE_SIZE), # crop center image_size out
transforms.ToTensor(), # turn image from [0-255] to [0-1]
utils.normalize_tensor_transform() # normalize with ImageNet values
])
train_dataset = datasets.ImageFolder(args.dataset, dataset_transform)
train_loader = DataLoader(train_dataset, batch_size = BATCH_SIZE)
# style image
style_transform = transforms.Compose([
transforms.ToTensor(), # turn image from [0-255] to [0-1]
utils.normalize_tensor_transform() # normalize with ImageNet values
])
style = utils.load_image(args.style_image)
style = style_transform(style)
style = Variable(style.repeat(BATCH_SIZE, 1, 1, 1)).type(dtype)
style_name = os.path.split(args.style_image)[-1].split('.')[0]
def image_preprocess(img_dir):
img = Image.open(img_dir)
transform = transforms.Compose([
transforms.Scale(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.40760392, 0.45795686, 0.48501961],
std=[1,1,1]),
])
img = transform(img).view((-1,3,image_size,image_size))
return img
def __init__(self, size, interpolation=Image.BILINEAR):
self.worker = torchvision.transforms.Scale(size, interpolation)
def visualize_skig_tensor():
"""对用于训练的Skig数据集进行可视化
"""
transform = transforms.Compose(
[transforms.Scale(112, interpolation=Image.CUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[1., 1., 1.])])
train_data = GestureDataSet(root='/home/zdh/zz/workspace/refactorSkig', train=False, output_frames_cnt=16,
transform=transform)
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=1, shuffle=True, num_workers=0)
for batch_idx, (data, target) in enumerate(train_loader):
images = torch.transpose(data[0, ...], 1, 0) # (L, C, H, W)
_imshow(torchvision.utils.make_grid(images), title='skig-' + str(target[0]))
model.load_state_dict(checkpoint['state_dict'])
logging.info('=> loaded checkpoint `{}` (epoch: {})'.format(
args.resume, checkpoint['epoch']
))
else:
logging.info('=> no checkpoint found at `{}`'.format(args.resume))
cudnn.benchmark = True
# Data loading code
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
t = transforms.Compose([
transforms.Scale(args.scale_size),
transforms.CenterCrop(args.crop_size),
transforms.ToTensor(),
normalize])
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, t),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
criterion = nn.CrossEntropyLoss().cuda()
validate(args, val_loader, model, criterion, args.start_epoch)
parser.add_argument('--dropout', type=float, default=0.2)
parser.add_argument('--clamp', type=float, default=1e-2)
parser.add_argument('--wasserstein', type=bool, default=True)
opt = parser.parse_args()
if opt.clean_ckpt:
shutil.rmtree(opt.ckpt_path)
os.makedirs(opt.ckpt_path, exist_ok=True)
logger = logging.Logger(opt.ckpt_path)
opt.seed = 1
torch.manual_seed(opt.seed)
torch.cuda.manual_seed(opt.seed)
cudnn.benchmark = True
EPS = 1e-12
transform = transforms.Compose([transforms.Scale(opt.image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset = dset.CIFAR10(root=opt.dataset_path, train=True, download=False, transform=transform)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
D = torch.nn.DataParallel(model.Discriminator(opt).cuda(), device_ids=range(opt.num_gpus))
G = torch.nn.DataParallel(model.Generator(opt).cuda(), device_ids=range(opt.num_gpus))
if opt.load_ckpt:
D.load_state_dict(torch.load(os.path.join(opt.ckpt_path, 'D.pth')))
G.load_state_dict(torch.load(os.path.join(opt.ckpt_path, 'G.pth')))
criterion = nn.BCELoss().cuda()
if opt.wasserstein:
optimizer_d = optim.RMSprop(D.parameters(), lr=opt.lr_rmsprop)
optimizer_g = optim.RMSprop(G.parameters(), lr=opt.lr_rmsprop)
encoder.cuda()
decoder.cuda()
discriminator.cuda()
discriminator2.cuda()
encoder.apply(weights_init)
decoder.apply(weights_init)
# loss function
BCE_loss = nn.BCELoss().cuda()
MSE_loss = nn.MSELoss().cuda()
SSIM_loss = SSIM(window_size=11).cuda()
MSSIM_loss = MSSSIM().cuda()
# Data pre-processing
transform = transforms.Compose([transforms.Scale(params.input_size),
transforms.ToTensor(),])
# transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))])
# transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
# Train data
# train_data = DatasetFromFolder(data_dir, subfolder=subfolder, transform=transform, resize_scale=params.input_size,
# name=False)
train_data = DatasetFromFolder2(data_dir, subfolder=subfolder, transform=transform, resize_scale=params.resize_scale,
crop_size=params.crop_size, fliplr=params.fliplr)
train_data_loader = torch.utils.data.DataLoader(dataset=train_data,
batch_size=params.batch_size,
shuffle=True)
# Test data
# test_data = DatasetFromFolder(data_dir, subfolder='img_test', transform=transform, resize_scale=params.input_size,
# crop_size=params.crop_size, fliplr=params.fliplr, yuv=True)
test_data = DatasetFromFolder2(data_dir, subfolder='lfw_test.txt', transform=transform,
def image_loader(image_name, size):
loader = transforms.Compose([transforms.Scale(size), transforms.ToTensor()])
image = Image.open(image_name)
image = loader(image).float()
return image