How to use the torchvision.transforms.RandomHorizontalFlip function in torchvision

To help you get started, we’ve selected a few torchvision examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github D-X-Y / NAS-Projects / others / GDAS / lib / datasets / test_dataset.py View on Github external
import os, sys, torch
import torchvision.transforms as transforms

from TieredImageNet import TieredImageNet
from MetaBatchSampler import MetaBatchSampler

root_dir = os.environ['TORCH_HOME'] + '/tiered-imagenet'
print ('root : {:}'.format(root_dir))
means, stds = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]

lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(84, padding=8), transforms.ToTensor(), transforms.Normalize(means, stds)]
transform = transforms.Compose(lists)

dataset = TieredImageNet(root_dir, 'val-test', transform)
image, label = dataset[111]
print ('image shape = {:}, label = {:}'.format(image.size(), label))
print ('image : min = {:}, max = {:}    ||| label : {:}'.format(image.min(), image.max(), label))


sampler = MetaBatchSampler(dataset.labels, 250, 100, 10)

dataloader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler)

print ('the length of dataset : {:}'.format( len(dataset) ))
print ('the length of loader  : {:}'.format( len(dataloader) ))

for images, labels in dataloader:
github renqianluo / NAO_pytorch / train_search_2.py View on Github external
def build_imagenet(model_state_dict, optimizer_state_dict, **kwargs):
    ratio = kwargs.pop('ratio')
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    train_transform = transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ColorJitter(
            brightness=0.4,
            contrast=0.4,
            saturation=0.4,
            hue=0.2),
        transforms.ToTensor(),
        normalize,
    ])
    valid_transform = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        normalize,
    ])
    if args.zip_file:
        logging.info('Loading data from zip file')
github developer0hye / PyTorch-Darknet53 / train.py View on Github external
.format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle= True,
        num_workers=args.workers, pin_memory=True)

    val_loader = torch.utils.data.DataLoader(
        datasets.ImageFolder(valdir, transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ])),
        batch_size=args.batch_size, shuffle=False,
github amdegroot / ssd.pytorch / data / data_augment.py View on Github external
transform (transform): the transformation to be applied to the the
        image
    """
    # SAMPLE - Random sample the image
    # sample = random_sample()

    # RESIZE to fixed size
    # resize = transforms.RandomSizedCrop(224)

    # apply photo-metric distortions https://arxiv.org/pdf/1312.5402.pdf
    # photmetric = None

    return transforms.Compose([
        # sample,
        # resize,
        transforms.RandomHorizontalFlip()
        # photmetric
github neale / HyperGAN / gnn_single_code_cifar4.py View on Github external
def load_cifar():
    transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])  
    transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])  
    trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                        download=True,
                        transform=transform_train)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=32,
                          shuffle=True,
                          num_workers=2)
    testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                       download=True,
                       transform=transform_test)
github wangyirui / AD_Prediction / main.py View on Github external
trg_size = (224, 224)
    elif options.network_type == 'ResNet3D':
        trg_size = (110, 110, 110)
    elif options.network_type == 'ResNet2D':
        trg_size = (224, 224)
    
    if options.network_type == "AlexNet3D":
        transformations = transforms.Compose([CustomResize(options.network_type, trg_size),
                                              CustomToTensor(options.network_type)
                                        ])
        dset_train = AD_Dataset(IMG_PATH, TRAINING_PATH, transformations)
        dset_test = AD_Dataset(IMG_PATH, TESTING_PATH, transformations)

    elif options.network_type == 'AlexNet2D':
        transformations = transforms.Compose([transforms.Resize(trg_size, Image.BICUBIC),
                                              transforms.RandomHorizontalFlip(),
                                              transforms.ToTensor()
                                              ])
        dset_train = AD_2DSlicesData(IMG_PATH, TRAINING_PATH, transformations)
        dset_test = AD_2DSlicesData(IMG_PATH, TESTING_PATH, transformations)

    # Use argument load to distinguish training and testing
    if options.load is None:
        train_loader = DataLoader(dset_train,
                                  batch_size = options.batch_size,
                                  shuffle = True,
                                  num_workers = 4,
                                  drop_last = True
                                 )
    else:
        # Only shuffle the data when doing training
        train_loader = DataLoader(dset_train,
github rubyyhj / ReID_PCB / utils.py View on Github external
dataset {string} -- name of the dataset: [market1501, duke, cuhk03]
        batch_size {int} -- the batch size to load
        part {string} -- which part of the dataset: [train, query, gallery]

    Returns:
        (torch.utils.data.DataLoader, torchvision.datasets.ImageFolder) -- the data loader and the image set
    """

    transform_list = [
        transforms.Resize(size=(384, 128), interpolation=3),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]

    if augment:
        transform_list.insert(1, transforms.RandomHorizontalFlip())

    data_transform = transforms.Compose(transform_list)

    image_dataset = datasets.ImageFolder(os.path.join(DATASET_PATH[dataset], part),
                                         data_transform)

    dataloader = torch.utils.data.DataLoader(image_dataset, batch_size=batch_size,
                                             shuffle=shuffle, num_workers=4)

    return dataloader
github implus / PytorchInsight / classification / experiment_imagenet / imagenet_tricks.py View on Github external
loss_scale=args.loss_scale)

    #model = torch.nn.DataParallel(model).cuda()
    #model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank)
    model = DDP(model, delay_allreduce=True)

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'valf')
    #normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

    data_aug_scale = (0.08, 1.0) if args.modelsize == 'large' else (0.2, 1.0)

    train_dataset = datasets.ImageFolder(traindir, transforms.Compose([
            transforms.RandomResizedCrop(224, scale = data_aug_scale),
            transforms.RandomHorizontalFlip(),
            # transforms.ToTensor(),
            # normalize,
        ]))
    val_dataset   = datasets.ImageFolder(valdir, transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            # transforms.ToTensor(),
            # normalize,
        ]))

    train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.train_batch, shuffle=False,
        num_workers=args.workers, pin_memory=True, sampler=train_sampler, collate_fn=fast_collate)
github csyhhu / Awesome-Deep-Neural-Network-Compression / Codes / utils / dataset.py View on Github external
elif dataset_name == 'STL10':

        data_root_list = []
        for data_root in data_root_list:
            if os.path.exists(data_root):
                print('Found STL10 in %s' % data_root)
                break

        if split == 'train':
            loader = torch.utils.data.DataLoader(
                datasets.STL10(
                    root=data_root, split='train', download=True,
                    transform=transforms.Compose([
                        transforms.Pad(4),
                        transforms.RandomCrop(96),
                        transforms.RandomHorizontalFlip(),
                        transforms.ToTensor(),
                        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                    ])),
                batch_size=batch_size, shuffle=True)

        if split in ['test', 'val']:
            loader = torch.utils.data.DataLoader(
                datasets.STL10(
                    root=data_root, split='test', download=True,
                    transform=transforms.Compose([
                        transforms.ToTensor(),
                        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                    ])),
                batch_size=batch_size, shuffle=False)
github VamshiTeja / SMDL / lib / utils.py View on Github external
if cfg.dataset.name == 'CIFAR':
        if num_classes == 10:
            # https://github.com/Armour/pytorch-nn-practice/blob/master/utils/meanstd.py
            norm = transforms.Normalize(mean=[0.491, 0.482, 0.447], std=[0.247, 0.243, 0.261])
            train_transforms = transforms.Compose([transforms.RandomCrop(32, padding=4),
                                                   transforms.RandomHorizontalFlip(),
                                                   transforms.ToTensor(), norm
                                                   ])
            test_transforms = transforms.Compose([transforms.ToTensor(), norm])
            train_dataset = cifar.CIFAR10(root='./datasets/', train=True, download=True,
                                          transform=train_transforms)
            test_dataset = cifar.CIFAR10(root='./datasets/', train=False, transform=test_transforms)
        elif num_classes == 100:
            norm = transforms.Normalize(mean=[0.507, 0.487, 0.441], std=[0.267, 0.256, 0.276])
            train_transforms = transforms.Compose([transforms.RandomCrop(32, padding=4),
                                                   transforms.RandomHorizontalFlip(),
                                                   transforms.ToTensor(), norm
                                                   ])
            test_transforms = transforms.Compose([transforms.ToTensor(), norm])
            train_dataset = cifar.CIFAR100(root='./datasets/', train=True, download=True,
                                           transform=train_transforms)
            test_dataset = cifar.CIFAR100(root='./datasets/', train=False, transform=test_transforms)
    elif cfg.dataset.name == 'MNIST':
        transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
        train_dataset = datasets.MNIST(root='./datasets/MNIST', train=True, download=True, transform=transform)
        test_dataset = datasets.MNIST(root='./datasets/MNIST', train=False, download=True, transform=transform)
    elif cfg.dataset.name == 'FashionMNIST':
        transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
        train_dataset = datasets.FashionMNIST(root='./datasets/FashionMNIST', train=True, download=True, transform=transform)
        test_dataset = datasets.FashionMNIST(root='./datasets/FashionMNIST', train=False, download=True, transform=transform)
    elif cfg.dataset.name == 'EMNIST':
        transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])