How to use the torchvision.models function in torchvision

To help you get started, we’ve selected a few torchvision examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github nschaetti / EchoTorch / echotorch / models / NilsNet.py View on Github external
def __init__(self, reservoir_dim, sfa_dim, ica_dim, pretrained=False, feature_selector='resnet18'):
        """
        Constructor
        """
        # Upper class
        super(NilsNet, self).__init__()

        # ResNet
        if feature_selector == 'resnet18':
            self.feature_selector = torchvision.models.resnet18(pretrained=True)
        elif feature_selector == 'resnet34':
            self.feature_selector = torchvision.models.resnet34(pretrained=True)
        elif feature_selector == 'resnet50':
            self.feature_selector = torchvision.models.resnet50(pretrained=True)
        elif feature_selector == 'alexnet':
            self.feature_selector = torchvision.models.alexnet(pretrained=True)
        # end if

        # Skip last layer
        self.reservoir_input_dim = self.feature_selector.fc.in_features
        self.feature_selector.fc = ecnn.Identity()
github Adi-iitd / AI-Art / Neural_Style_Transfer.py View on Github external
"conv3_1": 10, "conv3_2": 12, "conv3_3": 14, "conv3_4": 16,
                         "conv4_1": 19, "conv4_2": 21, "conv4_3": 23, "conv4_4": 25,
                         "conv5_1": 28, "conv5_2": 30, "conv5_3": 32, "conv5_4": 34}
        
        # convert the mean and stdv to torch.tensor 
        mean = torch.tensor(mean, dtype = torch.float32, device = device)
        stdv = torch.tensor(stdv, dtype = torch.float32, device = device)
        self.transforms = T.Normalize(mean, stdv) # transform to normalize the image
        
        # create an integer mapping of the layer names
        self.con_layers = [mapping_dict[layer] for layer in con_layers]; 
        self.sty_layers = [mapping_dict[layer] for layer in sty_layers];
        self.all_layers = self.con_layers + self.sty_layers
        
        # initialize a pre-trained model in eval mode (no intent to update the weights)
        self.vgg19 = models.vgg19(pretrained = True, progress = True).features
        self.vgg19 = self.vgg19.to(device).eval()
        
        # replace the max pooling layers by average pooling
        for name, layer in self.vgg19.named_children():
            if isinstance(layer, nn.MaxPool2d):
                self.vgg19[int(name)] = nn.AvgPool2d(kernel_size = 2, stride = 2)
github tczhangzhi / pytorch-distributed / apex_distributed.py View on Github external
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models

from apex import amp
from apex.parallel import DistributedDataParallel

model_names = sorted(name for name in models.__dict__
                     if name.islower() and not name.startswith("__") and callable(models.__dict__[name]))

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', metavar='DIR', default='/home/zhangzhi/Data/ImageNet2012', help='path to dataset')
parser.add_argument('-a',
                    '--arch',
                    metavar='ARCH',
                    default='resnet18',
                    choices=model_names,
                    help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)')
parser.add_argument('-j',
                    '--workers',
                    default=4,
                    type=int,
                    metavar='N',
                    help='number of data loading workers (default: 4)')
github thtang / CheXNet-with-localization / denseNet_localization.py View on Github external
def __init__(self, out_size):
		super(DenseNet121, self).__init__()
		self.densenet121 = torchvision.models.densenet121(pretrained=True)
		num_ftrs = self.densenet121.classifier.in_features
		self.densenet121.classifier = nn.Sequential(
		    nn.Linear(num_ftrs, out_size),
		    nn.Sigmoid()
		)
github Zheng222 / PPON / models / architecture.py View on Github external
def __init__(self,
                 feature_layer=34,
                 use_bn=False,
                 use_input_norm=True):
        super(VGGFeatureExtractor, self).__init__()
        if use_bn:
            model = torchvision.models.vgg19_bn(pretrained=True)
        else:
            model = torchvision.models.vgg19(pretrained=True)
        self.use_input_norm = use_input_norm
        if self.use_input_norm:
            self.mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).cuda()
            self.std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).cuda()

        self.features = nn.Sequential(*list(model.features.children())[:(feature_layer + 1)])
        for k, v in self.features.named_parameters():
            v.requires_grad = False
github EliasVansteenkiste / edge_detection_framework / configs_pytorch / f97_f10-9_pt.py View on Github external
def my_resnet101(pretrained=False, **kwargs):
    """Constructs a ResNet-101 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = MyResNet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
        model.load_state_dict(torch.utils.model_zoo.load_url(torchvision.models.resnet.model_urls['resnet101']))
    return model
github achaiah / pywick / pywick / models / segmentation / resnet_gcn.py View on Github external
def __init__(self, num_classes, pretrained=True, **kwargs):
        super(ResnetGCN, self).__init__()

        resent = models.resnet101(pretrained=pretrained)
        self.layer0 = nn.Sequential(resent.conv1, resent.bn1, resent.relu, resent.maxpool)
        self.layer1 = resent.layer1
        self.layer2 = resent.layer2
        self.layer3 = resent.layer3
        self.layer4 = resent.layer4

        #Assuming input of size 240x320
        ks = 7
        self.gcn256 = GlobalConvolutionBlock(256, num_classes, (59,79))
        self.br256 = BoundaryRefine(num_classes)
        self.gcn512 = GlobalConvolutionBlock(512, num_classes, (29,39))
        self.br512 = BoundaryRefine(num_classes)
        self.gcn1024 = GlobalConvolutionBlock(1024, num_classes, (13,19))
        self.br1024 = BoundaryRefine(num_classes)
        self.gcn2048 = GlobalConvolutionBlock(2048, num_classes, (7,9))
        self.br2048 = BoundaryRefine(num_classes)
github EliasVansteenkiste / edge_detection_framework / configs_pytorch / f97_f10-4_pt.py View on Github external
def my_resnet101(pretrained=False, **kwargs):
    """Constructs a ResNet-101 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = MyResNet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
        model.load_state_dict(torch.utils.model_zoo.load_url(torchvision.models.resnet.model_urls['resnet101']))
    return model
github EliasVansteenkiste / edge_detection_framework / configs / e15.py View on Github external
def squeezenet1_0(pretrained=False, **kwargs):
    r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level
    accuracy with 50x fewer parameters and <0.5MB model size"
    `_ paper.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = SqueezeNet(version=1.0, **kwargs)
    if pretrained:
        model.load_state_dict(torch.utils.model_zoo.load_url(torchvision.models.squeezenet.model_urls['squeezenet1_0']))
    return model
github paperswithcode / sotabench-api / sotabench / object_detection / utils.py View on Github external
def _get_iou_types(model):
    model_without_ddp = model
    if isinstance(model, torch.nn.parallel.DistributedDataParallel):
        model_without_ddp = model.module
    iou_types = ["bbox"]
    if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN):
        iou_types.append("segm")
    if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN):
        iou_types.append("keypoints")
    return iou_types