Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
ON Tensors.rowid = T1.tensor_rowid
WHERE
series = (
SELECT tag_id
FROM Runs
CROSS JOIN Tags USING (run_id)
WHERE Runs.run_name = :run AND Tags.tag_name = :tag)
AND step IS NOT NULL
AND dtype = :dtype
/* Should be n-vector, n >= 3: [width, height, samples...] */
AND (NOT INSTR(shape, ',') AND CAST (shape AS INT) >= 3)
AND T0.idx = 0
AND T1.idx = 1
ORDER BY step
""",
{"run": run, "tag": tag, "dtype": tf.string.as_datatype_enum},
)
return [
{
"wall_time": computed_time,
"step": step,
"width": width,
"height": height,
"query": self._query_for_individual_image(
run, tag, sample, index
),
}
for index, (computed_time, step, width, height) in enumerate(
cursor
)
]
response = []
model.cuda(args.gpu)
if args.optimizer == 'adam':
optimizer_class = optim.Adam
elif args.optimizer == 'adagrad':
optimizer_class = optim.Adagrad
elif args.optimizer == 'adadelta':
optimizer_class = optim.Adadelta
elif args.optimizer == 'SGD':
optimizer_class = optim.SGD
params = [p for p in model.parameters() if p.requires_grad]
optimizer = optimizer_class(params=params, lr=args.lr, weight_decay=args.l2reg)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='max', factor=0.5, patience=10, verbose=True)
criterion = nn.CrossEntropyLoss()
trpack = [model, params, criterion, optimizer]
train_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'train'), flush_secs=10)
valid_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'valid'), flush_secs=10)
tsw, vsw = train_summary_writer, valid_summary_writer
num_train_batches = data.train_size // data.batch_size
logging.info(f'num_train_batches: {num_train_batches}')
validate_every = num_train_batches // 10
best_vaild_accuacy = 0
iter_count = 0
tic = time.time()
for epoch_num in range(args.max_epoch):
for batch_iter, train_batch in enumerate(data.train_minibatch_generator()):
progress = epoch_num + batch_iter/num_train_batches
iter_count += 1
if args.gpu > -1:
logging.info(f'Using GPU {args.gpu}')
model.cuda(args.gpu)
if args.optimizer == 'adam':
optimizer_class = optim.Adam
elif args.optimizer == 'adagrad':
optimizer_class = optim.Adagrad
elif args.optimizer == 'adadelta':
optimizer_class = optim.Adadelta
params = [p for p in model.parameters() if p.requires_grad]
optimizer = optimizer_class(params=params, weight_decay=args.l2reg)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='max', factor=0.5, patience=20, verbose=True)
criterion = nn.CrossEntropyLoss()
trpack = [model, params, criterion, optimizer]
train_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'train'), flush_secs=10)
valid_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'valid'), flush_secs=10)
tsw, vsw = train_summary_writer, valid_summary_writer
num_train_batches = len(train_loader)
logging.info(f'num_train_batches: {num_train_batches}')
validate_every = num_train_batches // 10
best_vaild_accuacy = 0
iter_count = 0
tic = time.time()
for batch_iter, train_batch in enumerate(train_loader):
progress = train_loader.epoch
if progress > args.max_epoch:
break
model.cuda(args.gpu)
if args.optimizer == 'adam':
optimizer_class = optim.Adam
elif args.optimizer == 'adagrad':
optimizer_class = optim.Adagrad
elif args.optimizer == 'adadelta':
optimizer_class = optim.Adadelta
params = [p for p in model.parameters() if p.requires_grad]
optimizer = optimizer_class(params=params, weight_decay=args.l2reg)
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='max', factor=0.5, patience=20, verbose=True)
criterion = nn.CrossEntropyLoss()
trpack = [model, params, criterion, optimizer]
train_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'train'), flush_secs=10)
valid_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(args.save_dir, 'log', 'valid'), flush_secs=10)
tsw, vsw = train_summary_writer, valid_summary_writer
num_train_batches = len(train_loader)
logging.info(f'num_train_batches: {num_train_batches}')
validate_every = num_train_batches // 10
best_vaild_accuacy = 0
iter_count = 0
tic = time.time()
for batch_iter, train_batch in enumerate(train_loader):
progress = train_loader.epoch
if progress > args.max_epoch:
break
iter_count += 1
################################# train iteration ####################################
self.mock_debugger_data_server = tf.compat.v1.test.mock.Mock(
debugger_server_lib.DebuggerDataServer
)
self.mock_debugger_data_server_class = tf.compat.v1.test.mock.Mock(
debugger_server_lib.DebuggerDataServer,
return_value=self.mock_debugger_data_server,
)
tf.compat.v1.test.mock.patch.object(
debugger_server_lib,
"DebuggerDataServer",
self.mock_debugger_data_server_class,
).start()
self.context = base_plugin.TBContext(
logdir=self.log_dir, multiplexer=multiplexer
)
self.plugin = debugger_plugin.DebuggerPlugin(self.context)
self.plugin.listen(self.debugger_data_server_grpc_port)
wsgi_app = application.TensorBoardWSGI([self.plugin])
self.server = werkzeug_test.Client(wsgi_app, wrappers.BaseResponse)
# The debugger data server should be started at the correct port.
self.mock_debugger_data_server_class.assert_called_once_with(
self.debugger_data_server_grpc_port, self.log_dir
)
mock_debugger_data_server = self.mock_debugger_data_server
start = (
mock_debugger_data_server.start_the_debugger_data_receiving_server
)
ckpt = tf.train.Checkpoint(embeddings=embeddings)
checkpoint_file = output_dir + "/embeddings.ckpt"
ckpt.save(checkpoint_file)
reader = tf.train.load_checkpoint(output_dir)
variable_shape_map = reader.get_variable_to_shape_map()
key_to_use = ""
for key in variable_shape_map:
if "embeddings" in key:
key_to_use = key
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = key_to_use
projector.visualize_embeddings(output_dir, config)
#%% Evaluate model
scores = model.evaluate(X_test, y_test, verbose=1)
print(f"Accuracy: {scores[1]:.2%}")
#%% Train with binary crossentropy and gram matrix
accuracies = []
for i in range(1, 21):
kernel = Lambda(lambda inputs: tf.reduce_sum(inputs[0] * inputs[1], axis=1))
model = Sequential([BasicCNN((32, 32, 3), i), GramMatrix(kernel)])
model.summary()
model.compile(
optimizer="adam", loss=BinaryCrossentropy(), metrics=[class_consistency_loss, min_eigenvalue],
)
model.fit(X_train, y_train, validation_split=0.2, epochs=20, batch_size=32)
Args:
logdir: A log directory that contains event files.
event_file: Or, a particular event file path.
tag: An optional tag name to query for.
Returns:
A list of InspectionUnit objects.
"""
if logdir:
subdirs = io_wrapper.GetLogdirSubdirectories(logdir)
inspection_units = []
for subdir in subdirs:
generator = itertools.chain(
*[
generator_from_event_file(os.path.join(subdir, f))
for f in tf.io.gfile.listdir(subdir)
if io_wrapper.IsTensorFlowEventsFile(
os.path.join(subdir, f)
)
]
)
inspection_units.append(
InspectionUnit(
name=subdir,
generator=generator,
field_to_obs=get_field_to_observations_map(generator, tag),
)
)
if inspection_units:
print(
"Found event files in:\n{}\n".format(
"\n".join([u.name for u in inspection_units])
def train(args):
experiment_name = (f'w{args.word_dim}_lh{args.lstm_hidden_dims}'
f'_mh{args.mlp_hidden_dim}_ml{args.mlp_num_layers}'
f'_d{args.dropout_prob}')
save_dir = os.path.join(args.save_root_dir, experiment_name)
train_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(save_dir, 'log', 'train'))
valid_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(save_dir, 'log', 'valid'))
lstm_hidden_dims = [int(d) for d in args.lstm_hidden_dims.split(',')]
logging.info('Loading data...')
text_field = data.Field(lower=True, include_lengths=True,
batch_first=False)
label_field = data.Field(sequential=False)
if not os.path.exists(args.data_dir):
os.makedirs(args.data_dir)
dataset_splits = datasets.SNLI.splits(
text_field=text_field, label_field=label_field, root=args.data_dir)
text_field.build_vocab(*dataset_splits, vectors=args.pretrained)
label_field.build_vocab(*dataset_splits)
train_loader, valid_loader, _ = data.BucketIterator.splits(
datasets=dataset_splits, batch_size=args.batch_size, device=args.gpu)
def train(args):
experiment_name = (f'w{args.word_dim}_lh{args.lstm_hidden_dims}'
f'_mh{args.mlp_hidden_dim}_ml{args.mlp_num_layers}'
f'_d{args.dropout_prob}')
save_dir = os.path.join(args.save_root_dir, experiment_name)
train_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(save_dir, 'log', 'train'))
valid_summary_writer = tensorboard.FileWriter(
logdir=os.path.join(save_dir, 'log', 'valid'))
lstm_hidden_dims = [int(d) for d in args.lstm_hidden_dims.split(',')]
logging.info('Loading data...')
text_field = data.Field(lower=True, include_lengths=True,
batch_first=False)
label_field = data.Field(sequential=False)
if not os.path.exists(args.data_dir):
os.makedirs(args.data_dir)
dataset_splits = datasets.SNLI.splits(
text_field=text_field, label_field=label_field, root=args.data_dir)
text_field.build_vocab(*dataset_splits, vectors=args.pretrained)
label_field.build_vocab(*dataset_splits)
Returns:
A werkzeug.Response application.
"""
tag = request.args.get("tag")
run = request.args.get("run")
sample = int(request.args.get("sample", 0))
events = self._multiplexer.Tensors(run, tag)
try:
response = self._audio_response_for_run(events, run, tag, sample)
except KeyError:
return http_util.Respond(
request, "Invalid run or tag", "text/plain", code=400
)
return http_util.Respond(request, response, "application/json")