How to use the tensorboard.plugins.custom_scalar.layout_pb2.Chart function in tensorboard

To help you get started, we’ve selected a few tensorboard examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github Orienfish / ur3-RL / deep_q_network_part_v2.py View on Github external
from tensorboard.plugins.custom_scalar import layout_pb2
    
    # This action does not have to be performed at every step, so the action is not
    # taken care of by an op in the graph. We only need to specify the layout once. 
    # We only need to specify the layout once (instead of per step).
    layout_summary = summary.custom_scalar_pb(layout_pb2.Layout(
        category=[
            layout_pb2.Category(
            title='losses',
            chart=[
                layout_pb2.Chart(
                    title='losses',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'loss.*'],
                )),
                layout_pb2.Chart(
                    title='baz',
                    margin=layout_pb2.MarginChartContent(
                    series=[
                        layout_pb2.MarginChartContent.Series(
                        value='loss/baz/scalar_summary',
                        lower='baz_lower/baz/scalar_summary',
                        upper='baz_upper/baz/scalar_summary'),
                    ],
                )), 
            ]),
            layout_pb2.Category(
            title='trig functions',
            chart=[
                layout_pb2.Chart(
                    title='wave trig functions',
                    multiline=layout_pb2.MultilineChartContent(
github tensorflow / tensorboard / tensorboard / plugins / custom_scalar / custom_scalar_demo.py View on Github external
margin=layout_pb2.MarginChartContent(
                                    series=[
                                        layout_pb2.MarginChartContent.Series(
                                            value="loss/baz/scalar_summary",
                                            lower="loss/baz_lower/scalar_summary",
                                            upper="loss/baz_upper/scalar_summary",
                                        ),
                                    ],
                                ),
                            ),
                        ],
                    ),
                    layout_pb2.Category(
                        title="trig functions",
                        chart=[
                            layout_pb2.Chart(
                                title="wave trig functions",
                                multiline=layout_pb2.MultilineChartContent(
                                    tag=[
                                        r"trigFunctions/cosine",
                                        r"trigFunctions/sine",
                                    ],
                                ),
                            ),
                            # The range of tangent is different. Give it its own chart.
                            layout_pb2.Chart(
                                title="tan",
                                multiline=layout_pb2.MultilineChartContent(
                                    tag=[r"trigFunctions/tangent"],
                                ),
                            ),
                        ],
github Orienfish / ur3-RL / deep_q_network_virfnew.py View on Github external
from tensorboard.plugins.custom_scalar import layout_pb2

    # This action does not have to be performed at every step, so the action is not
    # taken care of by an op in the graph. We only need to specify the layout once. 
    # We only need to specify the layout once (instead of per step).
    layout_summary = summary.custom_scalar_pb(layout_pb2.Layout(
        category=[
            layout_pb2.Category(
                title='losses',
                chart=[
                    layout_pb2.Chart(
                        title='losses',
                        multiline=layout_pb2.MultilineChartContent(
                            tag=[r'loss.*'],
                        )),
                    layout_pb2.Chart(
                        title='baz',
                        margin=layout_pb2.MarginChartContent(
                            series=[
                                layout_pb2.MarginChartContent.Series(
                                    value='loss/baz/scalar_summary',
                                    lower='baz_lower/baz/scalar_summary',
                                    upper='baz_upper/baz/scalar_summary'),
                            ],
                        )),
                ]),
            layout_pb2.Category(
                title='trig functions',
                chart=[
                    layout_pb2.Chart(
                        title='wave trig functions',
                        multiline=layout_pb2.MultilineChartContent(
github Orienfish / ur3-RL / deep_q_network_real_train.py View on Github external
value='loss/baz/scalar_summary',
                                    lower='baz_lower/baz/scalar_summary',
                                    upper='baz_upper/baz/scalar_summary'),
                            ],
                        )),
                ]),
            layout_pb2.Category(
                title='trig functions',
                chart=[
                    layout_pb2.Chart(
                        title='wave trig functions',
                        multiline=layout_pb2.MultilineChartContent(
                            tag=[r'trigFunctions/cosine', r'trigFunctions/sine'],
                        )),
                    # The range of tangent is different. Let's give it its own chart.
                    layout_pb2.Chart(
                        title='tan',
                        multiline=layout_pb2.MultilineChartContent(
                            tag=[r'trigFunctions/tangent'],
                        )),
                ],
                # This category we care less about. Let's make it initially closed.
                closed=True),
        ]))
    writer.add_summary(layout_summary)
github Orienfish / ur3-RL / deep_q_network_real_train.py View on Github external
from tensorboard.plugins.custom_scalar import layout_pb2

    # This action does not have to be performed at every step, so the action is not
    # taken care of by an op in the graph. We only need to specify the layout once. 
    # We only need to specify the layout once (instead of per step).
    layout_summary = summary.custom_scalar_pb(layout_pb2.Layout(
        category=[
            layout_pb2.Category(
                title='losses',
                chart=[
                    layout_pb2.Chart(
                        title='losses',
                        multiline=layout_pb2.MultilineChartContent(
                            tag=[r'loss.*'],
                        )),
                    layout_pb2.Chart(
                        title='baz',
                        margin=layout_pb2.MarginChartContent(
                            series=[
                                layout_pb2.MarginChartContent.Series(
                                    value='loss/baz/scalar_summary',
                                    lower='baz_lower/baz/scalar_summary',
                                    upper='baz_upper/baz/scalar_summary'),
                            ],
                        )),
                ]),
            layout_pb2.Category(
                title='trig functions',
                chart=[
                    layout_pb2.Chart(
                        title='wave trig functions',
                        multiline=layout_pb2.MultilineChartContent(
github Orienfish / ur3-RL / deep_q_network_v7_range.py View on Github external
value='loss/baz/scalar_summary',
                        lower='baz_lower/baz/scalar_summary',
                        upper='baz_upper/baz/scalar_summary'),
                    ],
                )), 
            ]),
            layout_pb2.Category(
            title='trig functions',
            chart=[
                layout_pb2.Chart(
                    title='wave trig functions',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'trigFunctions/cosine', r'trigFunctions/sine'],
                )),
                # The range of tangent is different. Let's give it its own chart.
                layout_pb2.Chart(
                    title='tan',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'trigFunctions/tangent'],
                )),
            ],
        # This category we care less about. Let's make it initially closed.
        closed=True),
    ]))
    writer.add_summary(layout_summary)
github Orienfish / ur3-RL / deep_q_network_real_train.py View on Github external
def layout_dashboard(writer):
    from tensorboard import summary
    from tensorboard.plugins.custom_scalar import layout_pb2

    # This action does not have to be performed at every step, so the action is not
    # taken care of by an op in the graph. We only need to specify the layout once. 
    # We only need to specify the layout once (instead of per step).
    layout_summary = summary.custom_scalar_pb(layout_pb2.Layout(
        category=[
            layout_pb2.Category(
                title='losses',
                chart=[
                    layout_pb2.Chart(
                        title='losses',
                        multiline=layout_pb2.MultilineChartContent(
                            tag=[r'loss.*'],
                        )),
                    layout_pb2.Chart(
                        title='baz',
                        margin=layout_pb2.MarginChartContent(
                            series=[
                                layout_pb2.MarginChartContent.Series(
                                    value='loss/baz/scalar_summary',
                                    lower='baz_lower/baz/scalar_summary',
                                    upper='baz_upper/baz/scalar_summary'),
                            ],
                        )),
                ]),
            layout_pb2.Category(
github HumanCompatibleAI / adversarial-policies / src / aprl / training / logger.py View on Github external
def gen_multiline_charts(cfg):
    charts = []
    for title, tags in cfg:
        charts.append(
            layout_pb2.Chart(title=title, multiline=layout_pb2.MultilineChartContent(tag=tags))
        )
    return charts
github tensorflow / tensorboard / tensorboard / plugins / custom_scalar / custom_scalar_demo.py View on Github external
LOGDIR
    ) as writer:
        # We only need to specify the layout once (instead of per step).
        layout_summary = summary_lib.custom_scalar_pb(
            layout_pb2.Layout(
                category=[
                    layout_pb2.Category(
                        title="losses",
                        chart=[
                            layout_pb2.Chart(
                                title="losses",
                                multiline=layout_pb2.MultilineChartContent(
                                    tag=[r"loss(?!.*margin.*)"],
                                ),
                            ),
                            layout_pb2.Chart(
                                title="baz",
                                margin=layout_pb2.MarginChartContent(
                                    series=[
                                        layout_pb2.MarginChartContent.Series(
                                            value="loss/baz/scalar_summary",
                                            lower="loss/baz_lower/scalar_summary",
                                            upper="loss/baz_upper/scalar_summary",
                                        ),
                                    ],
                                ),
                            ),
                        ],
                    ),
                    layout_pb2.Category(
                        title="trig functions",
                        chart=[