How to use the tensorboard.plugins.custom_scalar.layout_pb2 function in tensorboard

To help you get started, we’ve selected a few tensorboard examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github HumanCompatibleAI / adversarial-policies / src / aprl / training / logger.py View on Github external
episode_rewards = layout_pb2.Category(
        title="Episode Reward",
        chart=gen_multiline_charts(
            [
                ("Shaped Reward", [r"shaping/eprewmean_true"]),
                ("Episode Length", [r"eplenmean"]),
                ("Sparse Reward", [r"shaping/epsparsemean"]),
                ("Dense Reward", [r"shaping/epdensemean"]),
                ("Dense Reward Annealing", [r"shaping/rew_anneal_c"]),
                ("Unshaped Reward", [r"ep_rewmean"]),
                ("Victim Action Noise", [r"shaping/victim_noise"]),
            ]
        ),
    )

    game_outcome = layout_pb2.Category(
        title="Game Outcomes",
        chart=gen_multiline_charts(
            [
                ("Agent 0 Win Proportion", [r"game_win0"]),
                ("Agent 1 Win Proportion", [r"game_win1"]),
                ("Tie Proportion", [r"game_tie"]),
                ("# of games", [r"game_total"]),
            ]
        ),
    )

    training = layout_pb2.Category(
        title="Training",
        chart=gen_multiline_charts(
            [
                ("Policy Loss", [r"policy_loss"]),
github Orienfish / ur3-RL / deep_q_network_part_v6_a.py View on Github external
title='losses',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'loss.*'],
                )),
                layout_pb2.Chart(
                    title='baz',
                    margin=layout_pb2.MarginChartContent(
                    series=[
                        layout_pb2.MarginChartContent.Series(
                        value='loss/baz/scalar_summary',
                        lower='baz_lower/baz/scalar_summary',
                        upper='baz_upper/baz/scalar_summary'),
                    ],
                )), 
            ]),
            layout_pb2.Category(
            title='trig functions',
            chart=[
                layout_pb2.Chart(
                    title='wave trig functions',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'trigFunctions/cosine', r'trigFunctions/sine'],
                )),
                # The range of tangent is different. Let's give it its own chart.
                layout_pb2.Chart(
                    title='tan',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'trigFunctions/tangent'],
                )),
            ],
        # This category we care less about. Let's make it initially closed.
        closed=True),
github Orienfish / ur3-RL / deep_q_network_part_v5.py View on Github external
title='losses',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'loss.*'],
                )),
                layout_pb2.Chart(
                    title='baz',
                    margin=layout_pb2.MarginChartContent(
                    series=[
                        layout_pb2.MarginChartContent.Series(
                        value='loss/baz/scalar_summary',
                        lower='baz_lower/baz/scalar_summary',
                        upper='baz_upper/baz/scalar_summary'),
                    ],
                )), 
            ]),
            layout_pb2.Category(
            title='trig functions',
            chart=[
                layout_pb2.Chart(
                    title='wave trig functions',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'trigFunctions/cosine', r'trigFunctions/sine'],
                )),
                # The range of tangent is different. Let's give it its own chart.
                layout_pb2.Chart(
                    title='tan',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'trigFunctions/tangent'],
                )),
            ],
        # This category we care less about. Let's make it initially closed.
        closed=True),
github HumanCompatibleAI / adversarial-policies / src / aprl / training / logger.py View on Github external
def tb_layout():
    episode_rewards = layout_pb2.Category(
        title="Episode Reward",
        chart=gen_multiline_charts(
            [
                ("Shaped Reward", [r"shaping/eprewmean_true"]),
                ("Episode Length", [r"eplenmean"]),
                ("Sparse Reward", [r"shaping/epsparsemean"]),
                ("Dense Reward", [r"shaping/epdensemean"]),
                ("Dense Reward Annealing", [r"shaping/rew_anneal_c"]),
                ("Unshaped Reward", [r"ep_rewmean"]),
                ("Victim Action Noise", [r"shaping/victim_noise"]),
            ]
        ),
    )

    game_outcome = layout_pb2.Category(
        title="Game Outcomes",
github Orienfish / ur3-RL / deep_q_network_part_v5.py View on Github external
)),
                layout_pb2.Chart(
                    title='baz',
                    margin=layout_pb2.MarginChartContent(
                    series=[
                        layout_pb2.MarginChartContent.Series(
                        value='loss/baz/scalar_summary',
                        lower='baz_lower/baz/scalar_summary',
                        upper='baz_upper/baz/scalar_summary'),
                    ],
                )), 
            ]),
            layout_pb2.Category(
            title='trig functions',
            chart=[
                layout_pb2.Chart(
                    title='wave trig functions',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'trigFunctions/cosine', r'trigFunctions/sine'],
                )),
                # The range of tangent is different. Let's give it its own chart.
                layout_pb2.Chart(
                    title='tan',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'trigFunctions/tangent'],
                )),
            ],
        # This category we care less about. Let's make it initially closed.
        closed=True),
    ]))
    writer.add_summary(layout_summary)
github Orienfish / ur3-RL / deep_q_network_part_v6_a.py View on Github external
title='baz',
                    margin=layout_pb2.MarginChartContent(
                    series=[
                        layout_pb2.MarginChartContent.Series(
                        value='loss/baz/scalar_summary',
                        lower='baz_lower/baz/scalar_summary',
                        upper='baz_upper/baz/scalar_summary'),
                    ],
                )), 
            ]),
            layout_pb2.Category(
            title='trig functions',
            chart=[
                layout_pb2.Chart(
                    title='wave trig functions',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'trigFunctions/cosine', r'trigFunctions/sine'],
                )),
                # The range of tangent is different. Let's give it its own chart.
                layout_pb2.Chart(
                    title='tan',
                    multiline=layout_pb2.MultilineChartContent(
                    tag=[r'trigFunctions/tangent'],
                )),
            ],
        # This category we care less about. Let's make it initially closed.
        closed=True),
    ]))
    writer.add_summary(layout_summary)
github tensorflow / tensorboard / tensorboard / plugins / custom_scalar / custom_scalars_plugin.py View on Github external
merged_layout = None
        runs = list(
            self._multiplexer.PluginRunToTagToContent(metadata.PLUGIN_NAME)
        )
        runs.sort()
        for run in runs:
            tensor_events = self._multiplexer.Tensors(
                run, metadata.CONFIG_SUMMARY_TAG
            )

            # This run has a layout. Merge it with the ones currently found.
            string_array = tensor_util.make_ndarray(
                tensor_events[0].tensor_proto
            )
            content = np.asscalar(string_array)
            layout_proto = layout_pb2.Layout()
            layout_proto.ParseFromString(tf.compat.as_bytes(content))

            if merged_layout:
                # Append the categories within this layout to the merged layout.
                for category in layout_proto.category:
                    if category.title in title_to_category:
                        # A category with this name has been seen before. Do not create a
                        # new one. Merge their charts, skipping any duplicates.
                        title_to_category[category.title].chart.extend(
                            [
                                c
                                for c in category.chart
                                if c
                                not in title_to_category[category.title].chart
                            ]
                        )