Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import os
import six
import subprocess
import time
import numpy as np
import tensorflow as tf
from tensorboard.plugins.beholder import im_util
from tensorboard.util import tb_logging
logger = tb_logging.get_logger()
class VideoWriter(object):
"""Video file writer that can use different output types.
Each VideoWriter instance writes video files to a specified
directory, using the first available VideoOutput from the provided
list.
"""
def __init__(self, directory, outputs):
self.directory = directory
# Filter to the available outputs
self.outputs = [out for out in outputs if out.available()]
if not self.outputs:
raise IOError("No available video outputs")
# ==============================================================================
"""Loader for event file data for an entire TensorBoard log directory."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
from tensorboard.backend.event_processing import directory_watcher
from tensorboard.backend.event_processing import io_wrapper
from tensorboard.util import tb_logging
logger = tb_logging.get_logger()
class LogdirLoader(object):
"""Loader for a root log directory, maintaining multiple DirectoryLoaders.
This class takes a root log directory and a factory for DirectoryLoaders, and
maintains one DirectoryLoader per "logdir subdirectory" of the root logdir.
Note that this class is not thread-safe.
"""
def __init__(self, logdir, directory_loader_factory):
"""Constructs a new LogdirLoader.
Args:
logdir: The root log directory to load from.
# https://github.com/tensorflow/tensorboard/issues/1225
# This must be set before the first import of tensorflow.
os.environ["GCS_READ_CACHE_DISABLED"] = "1"
import sys
from tensorboard import default
from tensorboard import program
from tensorboard.compat import tf
from tensorboard.plugins import base_plugin
from tensorboard.uploader import uploader_main
from tensorboard.util import tb_logging
logger = tb_logging.get_logger()
def run_main():
"""Initializes flags and calls main()."""
program.setup_environment()
if getattr(tf, "__version__", "stub") == "stub":
print(
"TensorFlow installation not found - running with reduced feature set.",
file=sys.stderr,
)
tensorboard = program.TensorBoard(
default.get_plugins() + default.get_dynamic_plugins(),
program.get_default_assets_zip_provider(),
subcommands=[uploader_main.UploaderSubcommand()],
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import six
from werkzeug import wrappers
from tensorboard.backend import http_util
from tensorboard.plugins import base_plugin
from tensorboard.plugins.debugger import constants
from tensorboard.util import tb_logging
logger = tb_logging.get_logger()
class InactiveDebuggerPlugin(base_plugin.TBPlugin):
"""A placeholder debugger plugin used when no grpc port is specified."""
plugin_name = constants.DEBUGGER_PLUGIN_NAME
def __init__(self):
pass
def is_active(self):
return False
def frontend_metadata(self):
return base_plugin.FrontendMetadata(
element_name="tf-debugger-dashboard"
import re
import threading
import time
import tensorflow as tf
from tensorflow.python.debug.lib import grpc_debug_server
from tensorboard.plugins.debugger import constants
from tensorboard.plugins.debugger import (
events_writer_manager as events_writer_manager_lib,
)
from tensorboard.plugins.debugger import numerics_alert
from tensorboard.util import tb_logging
from tensorboard.util import tensor_util
logger = tb_logging.get_logger()
class DebuggerDataStreamHandler(
grpc_debug_server.EventListenerBaseStreamHandler
):
"""Implementation of stream handler for debugger data.
Each instance of this class is created by a DebuggerDataServer upon a
gRPC stream established between the debugged Session::Run() invocation in
TensorFlow core runtime and the DebuggerDataServer instance.
Each instance of this class does the following:
1) receives a core metadata Event proto during its constructor call.
2) receives GraphDef Event proto(s) through its on_graph_event method.
3) receives tensor value Event proto(s) through its on_value_event method.
"""
from absl import app
from absl import logging
import contextlib
import os.path
import textwrap
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from tensorboard.compat.proto import config_pb2
from tensorboard.plugins.image import summary as image_summary
from tensorboard.util import tb_logging
logger = tb_logging.get_logger()
# Directory into which to write tensorboard data.
LOGDIR = "/tmp/images_demo"
# pylint: disable=line-too-long
IMAGE_URL = r"https://upload.wikimedia.org/wikipedia/commons/f/f0/Valve_original_%281%29.PNG"
# pylint: enable=line-too-long
IMAGE_CREDIT = textwrap.dedent(
"""\
Photo by Wikipedia contributor [User:Tauraloke], distributed under
CC-BY-SA 3.0. [Source].
[User:Tauraloke]: https://commons.wikimedia.org/wiki/User:Tauraloke
[Source]: https://commons.wikimedia.org/wiki/File:Valve_original_(1).PNG
"""
)
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from werkzeug import wrappers
from werkzeug.datastructures import Headers
from werkzeug import http
from tensorboard.util import tb_logging
# Loosely follow vocabulary from https://www.w3.org/TR/CSP/#framework-directives.
Directive = collections.namedtuple("Directive", ["name", "value"])
logger = tb_logging.get_logger()
_HTML_MIME_TYPE = "text/html"
_CSP_DEFAULT_SRC = "default-src"
# Whitelist of allowed CSP violations.
_CSP_IGNORE = {
# Allow TensorBoard to be iframed.
"frame-ancestors": ["*"],
# Polymer-based code uses unsafe-inline.
"style-src": ["'unsafe-inline'", "data:"],
# Used in canvas
"img-src": ["blob:", "data:"],
# Used by numericjs.
# TODO(stephanwlee): remove it eventually.
"script-src": ["'unsafe-eval'"],
}
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Internal information about the audio plugin."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorboard.compat.proto import summary_pb2
from tensorboard.plugins.audio import plugin_data_pb2
from tensorboard.util import tb_logging
logger = tb_logging.get_logger()
PLUGIN_NAME = "audio"
# The most recent value for the `version` field of the `AudioPluginData`
# proto.
PROTO_VERSION = 0
# Expose the `Encoding` enum constants.
Encoding = plugin_data_pb2.AudioPluginData.Encoding
def create_summary_metadata(display_name, description, encoding):
"""Create a `SummaryMetadata` proto for audio plugin data.
Returns:
A `SummaryMetadata` protobuf object.
import gzip
import math
import mimetypes
import os
import zipfile
import six
from werkzeug import utils
from werkzeug import wrappers
from tensorboard import plugin_util
from tensorboard.backend import http_util
from tensorboard.plugins import base_plugin
from tensorboard.util import tb_logging
logger = tb_logging.get_logger()
# If no port is specified, try to bind to this port. See help for --port
# for more details.
DEFAULT_PORT = 6006
class CorePlugin(base_plugin.TBPlugin):
"""Core plugin for TensorBoard.
This plugin serves runs, configuration data, and static assets. This
plugin should always be present in a TensorBoard WSGI application.
"""
plugin_name = "core"
from tensorboard import plugin_util
from tensorboard.backend import http_util
from tensorboard.backend import process_graph
from tensorboard.backend.event_processing import (
plugin_event_accumulator as event_accumulator,
)
from tensorboard.compat.proto import config_pb2
from tensorboard.compat.proto import graph_pb2
from tensorboard.data import provider
from tensorboard.plugins import base_plugin
from tensorboard.plugins.graph import graph_util
from tensorboard.plugins.graph import keras_util
from tensorboard.plugins.graph import metadata
from tensorboard.util import tb_logging
logger = tb_logging.get_logger()
# The Summary API is implemented in TensorFlow because it uses TensorFlow internal APIs.
# As a result, this SummaryMetadata is a bit unconventional and uses non-public
# hardcoded name as the plugin name. Please refer to link below for the summary ops.
# https://github.com/tensorflow/tensorflow/blob/11f4ecb54708865ec757ca64e4805957b05d7570/tensorflow/python/ops/summary_ops_v2.py#L757
_PLUGIN_NAME_RUN_METADATA = "graph_run_metadata"
# https://github.com/tensorflow/tensorflow/blob/11f4ecb54708865ec757ca64e4805957b05d7570/tensorflow/python/ops/summary_ops_v2.py#L788
_PLUGIN_NAME_RUN_METADATA_WITH_GRAPH = "graph_run_metadata_graph"
# https://github.com/tensorflow/tensorflow/blob/565952cc2f17fdfd995e25171cf07be0f6f06180/tensorflow/python/ops/summary_ops_v2.py#L825
_PLUGIN_NAME_KERAS_MODEL = "graph_keras_model"
class GraphsPlugin(base_plugin.TBPlugin):
"""Graphs Plugin for TensorBoard."""
plugin_name = metadata.PLUGIN_NAME