How to use the pynets.core.utils.save_mat function in pynets

To help you get started, we’ve selected a few pynets examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github dPys / PyNets / pynets / stats / netstats.py View on Github external
if nx.is_connected(self.G) is False:
                print('Warning: Graph is fragmented...\n')
            [self.G, _] = prune_disconnected(self.G)
        elif self.prune == 2:
            print('Pruning to retain only most important nodes...')
            [self.G, _] = most_important(self.G)
        else:
            print('Graph is connected...')

        # Get corresponding matrix
        self.in_mat = np.array(nx.to_numpy_matrix(self.G))

        # Saved pruned
        if (self.prune != 0) and (self.prune is not None):
            final_mat_path = "%s%s" % (self.est_path.split('.npy')[0], '_pruned_mat')
            utils.save_mat(self.in_mat, final_mat_path, self.out_fmt)
            print("%s%s" % ('Source File: ', final_mat_path))
        else:
            print("%s%s" % ('Source File: ', self.est_path))
        return self.in_mat, final_mat_path
github dPys / PyNets / pynets / stats / netstats.py View on Github external
if nx.is_connected(self.G) is False:
                print('Warning: Graph is fragmented...\n')
            [self.G, _] = prune_disconnected(self.G)
        elif self.prune == 2:
            print('Pruning to retain only most important nodes...')
            [self.G, _] = most_important(self.G)
        else:
            print('Graph is connected...')

        # Get corresponding matrix
        self.in_mat = np.array(nx.to_numpy_matrix(self.G))

        # Saved pruned
        if (self.prune != 0) and (self.prune is not None):
            final_mat_path = "%s%s" % (self.est_path.split('.npy')[0], '_pruned_mat')
            utils.save_mat(self.in_mat, final_mat_path, self.out_fmt)
            print("%s%s" % ('Source File: ', final_mat_path))
        else:
            print("%s%s" % ('Source File: ', self.est_path))
        return self.in_mat, final_mat_path
github dPys / PyNets / pynets / core / thresholding.py View on Github external
and prob (probabilistic).
    max_length : int
        Maximum fiber length threshold in mm to restrict tracking.
    """
    import gc
    from pynets.core import utils, thresholding

    thr_perc = 100 * float(thr)
    if parc is True:
        node_size = 'parc'

    if np.count_nonzero(conn_matrix) == 0:
        raise ValueError('ERROR: Raw connectivity matrix contains only zeros.')

    # Save unthresholded
    utils.save_mat(conn_matrix, utils.create_raw_path_diff(ID, network, conn_model, roi, dir_path, node_size,
                                                           target_samples, track_type, parc, directget, max_length))

    if min_span_tree is True:
        print('Using local thresholding option with the Minimum Spanning Tree (MST)...\n')
        if dens_thresh is False:
            print('Ignoring -dt flag since local density thresholding is not currently supported.')
        thr_type = 'MST_thr'
        edge_threshold = "%s%s" % (str(np.abs(1 - thr_perc)), '%')
        [conn_matrix_thr, coords, labels] = thresholding.local_thresholding_prop(conn_matrix, coords, labels, thr)
    elif disp_filt is True:
        thr_type = 'DISP_alpha'
        edge_threshold = "%s%s" % (str(np.abs(1 - thr_perc)), '%')
        G1 = thresholding.disparity_filter(nx.from_numpy_array(conn_matrix))
        # G2 = nx.Graph([(u, v, d) for u, v, d in G1.edges(data=True) if d['alpha'] < thr])
        print('Computing edge disparity significance with alpha = %s' % thr)
        print('Filtered graph: nodes = %s, edges = %s' % (G1.number_of_nodes(), G1.number_of_edges()))
github dPys / PyNets / pynets / core / thresholding.py View on Github external
print("%s%.2f%s" % ('\nThresholding proportionally at: ', thr_perc, '% ...\n'))
            conn_matrix_thr = thresholding.threshold_proportional(conn_matrix, float(thr))
        else:
            thr_type = 'dens'
            edge_threshold = None
            print("%s%.2f%s" % ('\nThresholding to achieve density of: ', thr_perc, '% ...\n'))
            conn_matrix_thr = thresholding.density_thresholding(conn_matrix, float(thr))

    if not nx.is_connected(nx.from_numpy_matrix(conn_matrix_thr)):
        print('Warning: Fragmented graph')

    # Save thresholded mat
    est_path = utils.create_est_path_func(ID, network, conn_model, thr, roi, dir_path, node_size, smooth, c_boot,
                                          thr_type, hpass, parc)

    utils.save_mat(conn_matrix_thr, est_path)
    gc.collect()

    return conn_matrix_thr, edge_threshold, est_path, thr, node_size, network, conn_model, roi, smooth, prune, ID, dir_path, atlas, uatlas, labels, coords, c_boot, norm, binary, hpass
github dPys / PyNets / pynets / core / thresholding.py View on Github external
unweighted graph.
    hpass : float
        High-pass filter values (Hz) to apply to node-extracted time-series.
    """
    import gc
    from pynets.core import utils, thresholding

    thr_perc = 100 * float(thr)
    if parc is True:
        node_size = 'parc'

    if np.count_nonzero(conn_matrix) == 0:
        raise ValueError('ERROR: Raw connectivity matrix contains only zeros.')

    # Save unthresholded
    utils.save_mat(conn_matrix, utils.create_raw_path_func(ID, network, conn_model, roi, dir_path, node_size, smooth,
                                                           c_boot, hpass, parc))

    if min_span_tree is True:
        print('Using local thresholding option with the Minimum Spanning Tree (MST)...\n')
        if dens_thresh is False:
            print('Ignoring -dt flag since local density thresholding is not currently supported.')
        thr_type = 'MST_thr'
        edge_threshold = "%s%s" % (str(np.abs(1 - thr_perc)), '%')
        [conn_matrix_thr, coords, labels] = thresholding.local_thresholding_prop(conn_matrix, coords, labels, thr)
    elif disp_filt is True:
        thr_type = 'DISP_alpha'
        edge_threshold = "%s%s" % (str(np.abs(1 - thr_perc)), '%')
        G1 = thresholding.disparity_filter(nx.from_numpy_array(conn_matrix))
        # G2 = nx.Graph([(u, v, d) for u, v, d in G1.edges(data=True) if d['alpha'] < thr])
        print('Computing edge disparity significance with alpha = %s' % thr)
        print('Filtered graph: nodes = %s, edges = %s' % (G1.number_of_nodes(), G1.number_of_edges()))
github dPys / PyNets / pynets / core / thresholding.py View on Github external
print("%s%.2f%s" % ('\nThresholding proportionally at: ', thr_perc, '% ...\n'))
            conn_matrix_thr = thresholding.threshold_proportional(conn_matrix, float(thr))
        else:
            thr_type = 'dens'
            edge_threshold = "%s%s" % (str(np.abs(1 - thr_perc)), '%')
            print("%s%.2f%s" % ('\nThresholding to achieve density of: ', thr_perc, '% ...\n'))
            conn_matrix_thr = thresholding.density_thresholding(conn_matrix, float(thr))

    if not nx.is_connected(nx.from_numpy_matrix(conn_matrix_thr)):
        print('Warning: Fragmented graph')

    # Save thresholded mat
    est_path = utils.create_est_path_diff(ID, network, conn_model, thr, roi, dir_path, node_size, target_samples,
                                          track_type, thr_type, parc, directget, max_length)

    utils.save_mat(conn_matrix_thr, est_path)
    gc.collect()

    return conn_matrix_thr, edge_threshold, est_path, thr, node_size, network, conn_model, roi, prune, ID, dir_path, atlas, uatlas, labels, coords, norm, binary, target_samples, track_type, atlas_mni, streams, directget, max_length