Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_density(x, thr):
d_known = thresholding.est_density(thresholding.threshold_absolute(x, thr, copy=True))
x = thresholding.density_thresholding(x, d_known)
d_test = thresholding.est_density(x)
assert np.equal(np.round(d_known, 1), np.round(d_test, 1))
def test_invert(x, thr, cp):
x_cp = x.copy() # invert modifies array in place and need orig to assert.
x_cp = thresholding.threshold_proportional(x_cp, thr, copy=cp)
s = thresholding.invert(x_cp)
x = x.flatten() # flatten arrays to more easily check s > x.
s = s.flatten()
s_gt_x = [inv_val > x[idx] for idx, inv_val in enumerate(s) if inv_val > 0]
assert False not in s_gt_x
def test_thr2prob(x, thr):
s = thresholding.threshold_absolute(thresholding.normalize(x), thr)
s[0][0] = 0.0000001
t = thresholding.thr2prob(s)
assert float(len(t[np.logical_and(t < 0.001, t > 0)])) == float(0.0)
G = nx.from_numpy_matrix(conn_matrix)
if not nx.is_connected(G):
[G, pruned_nodes] = netstats.prune_disconnected(G)
pruned_nodes.sort(reverse=True)
coords_pre = list(coords)
labels_pre = list(labels)
if len(pruned_nodes) > 0:
for j in pruned_nodes:
labels_pre.pop(j)
coords_pre.pop(j)
conn_matrix = nx.to_numpy_array(G)
labels = labels_pre
coords = coords_pre
maximum_edges = G.number_of_edges()
G = thresholding.weight_to_distance(G)
min_t = nx.minimum_spanning_tree(G, weight="distance")
len_edges = min_t.number_of_edges()
upper_values = np.triu_indices(np.shape(conn_matrix)[0], k=1)
weights = np.array(conn_matrix[upper_values])
weights = weights[~np.isnan(weights)]
edgenum = int(float(thr) * float(len(weights)))
if len_edges > edgenum:
print("%s%s%s" % ('Warning: The minimum spanning tree already has: ', len_edges,
' edges, select more edges. Local Threshold will be applied by just retaining the Minimum '
'Spanning Tree'))
conn_matrix_thr = nx.to_numpy_array(G)
return conn_matrix_thr, coords, labels
k = 1
len_edge_list = []
while len_edges < edgenum and k <= np.shape(conn_matrix)[0] and (len(len_edge_list[-fail_tol:]) -