Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
ID = '002'
models = ['corr', 'cov', 'sps', 'partcorr']
roi = None
node_size = 6
for conn_model in models:
for val in range(1, 10):
thr = round(val*0.1, 1)
for thr_type in ['prop', 'abs', 'dens', 'mst', 'disp']:
for target_samples in range(0, 100, 1000):
for track_type in ['local', 'particle']:
for parc in [True, False]:
est_path = utils.create_est_path_diff(ID, network, conn_model, thr, roi,
dir_path, node_size, target_samples,
track_type, thr_type, parc, directget, max_length)
out_path = utils.create_csv_path(dir_path, est_path)
assert out_path is not None
c_boot = 100
hpass = 100
parc = True
directget = 'prob'
max_length = 200
# Cross test various connectivity models, thresholds, and parc true/false.
for conn_model in models:
for val in range(1, 10):
thr = round(val*0.1, 1)
for thr_type in ['prop', 'abs', 'dens', 'mst', 'disp']:
for parc in [True, False]:
est_path = utils.create_est_path_func(ID, network, conn_model, thr, roi, dir_path, node_size,
smooth, c_boot,
thr_type, hpass, parc)
out_path = utils.create_csv_path(dir_path, est_path)
assert out_path is not None
dir_path = base_dir + '/002/dmri'
network = 'Default'
ID = '002'
models = ['corr', 'cov', 'sps', 'partcorr']
roi = None
node_size = 6
for conn_model in models:
for val in range(1, 10):
thr = round(val*0.1, 1)
for thr_type in ['prop', 'abs', 'dens', 'mst', 'disp']:
for target_samples in range(0, 100, 1000):
for track_type in ['local', 'particle']:
for parc in [True, False]:
def save_netmets(dir_path, est_path, metric_list_names, net_met_val_list_final):
from pynets.core import utils
# And save results to csv
out_path_neat = "%s%s" % (utils.create_csv_path(dir_path, est_path).split('.csv')[0], '_neat.csv')
zipped_dict = dict(zip(metric_list_names, net_met_val_list_final))
df = pd.DataFrame.from_dict(zipped_dict, orient='index', dtype='float32').transpose()
df.to_csv(out_path_neat, index=False)
del df, zipped_dict, net_met_val_list_final, metric_list_names
return out_path_neat
def save_netmets(dir_path, est_path, metric_list_names, net_met_val_list_final):
from pynets.core import utils
import pandas as pd
# And save results to csv
out_path_neat = "%s%s" % (utils.create_csv_path(dir_path, est_path).split('.csv')[0], '_neat.csv')
zipped_dict = dict(zip(metric_list_names, net_met_val_list_final))
df = pd.DataFrame.from_dict(zipped_dict, orient='index').transpose()
df.to_csv(out_path_neat, index=False)
del df, zipped_dict, net_met_val_list_final, metric_list_names
return out_path_neat