How to use the pymc.stochastic function in pymc

To help you get started, we’ve selected a few pymc examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github akelleh / causality / causality / inference / independence_tests / __init__.py View on Github external
        @pymc.stochastic(name='joint_sample')
        def ci_joint(value=self.mcmc_initialization):
            def logp(value):
                xi = [value[i] for i in range(len(x))]
                yi = [value[i+len(x)] for i in range(len(y))]
                zi = [value[i+len(x)+len(y)] for i in range(len(z))] 
                if len(z) == 0:
                    log_px_given_z = np.log(self.densities[0].pdf(data_predict=xi))
                    log_py_given_z = np.log(self.densities[1].pdf(data_predict=yi))
                    log_pz = 0.
                else:
                    log_px_given_z = np.log(self.densities[0].pdf(endog_predict=xi, exog_predict=zi))
                    log_py_given_z =np.log(self.densities[1].pdf(endog_predict=yi, exog_predict=zi))
                    log_pz = np.log(self.densities[2].pdf(data_predict=zi))
                return log_px_given_z + log_py_given_z + log_pz
        model = pymc.Model([ci_joint])
github PredictiveScienceLab / pysmc / examples / test_lognormal.py View on Github external
    @pymc.stochastic(observed=True)
    def y(value=0.001, x=x):
        return pymc.lognormal_like(value, mu=x[0], tau=1.)
    return locals()
github pymc-devs / pymc3 / pymc / examples / disaster_model_gof.py View on Github external
@pm.stochastic(observed=True, dtype=int)
def disasters(  value = disasters_array,
                early_mean = early_mean,
                late_mean = late_mean,
                switchpoint = switchpoint):
    """Annual occurences of coal mining disasters."""
    return pm.poisson_like(value[:switchpoint],early_mean) + pm.poisson_like(value[switchpoint:],late_mean)
github aflaxman / gbd / dismod3 / neg_binom_model.py View on Github external
        @mc.observed
        @mc.stochastic(name='data_%s' % key)
        def obs(value=value,
                S=data_sample,
                N=N,
                mu_i=rates,
                Xz=Xz,
                zeta=zeta,
                delta=delta):
            #zeta_i = .001
            #residual = pl.log(value[S] + zeta_i) - pl.log(mu_i*N[S] + zeta_i)
            #return mc.normal_like(residual, 0, 100. + delta)
            logp = mc.negative_binomial_like(value[S], N[S]*mu_i, delta*pl.exp(Xz*zeta))
            return logp
github aflaxman / gbd / dismod3 / neg_binom_model.py View on Github external
        @mc.observed
        @mc.stochastic(name='lower_bound_data_%s' % key)
        def obs_lb(value=value, N=N,
                   Xa=Xa, Xb=Xb,
                   alpha=alpha, beta=beta, gamma=gamma,
                   bounds_func=vars['bounds_func'],
                   delta=delta,
                   age_indices=ai,
                   age_weights=aw):

            # calculate study-specific rate function
            shifts = pl.exp(pl.dot(Xa, alpha) + pl.dot(Xb, pl.atleast_1d(beta)))
            exp_gamma = pl.exp(gamma)
            mu_i = [pl.dot(weights, bounds_func(s_i * exp_gamma[ages], ages)) for s_i, ages, weights in zip(shifts, age_indices, age_weights)]  # TODO: try vectorizing this loop to increase speed
            rate_param = mu_i*N
            violated_bounds = pl.nonzero(rate_param < value)
            logp = mc.negative_binomial_like(value[violated_bounds], rate_param[violated_bounds], delta)
            return logp
github aflaxman / gbd / dismod3 / logit_normal_model.py View on Github external
        @mc.observed
        @mc.stochastic(name='data_%d' % d['id'])
        def obs(value=logit_val, logit_se=logit_se,
                X=covariates(d),
                alpha=alpha, beta=beta, gamma=gamma, sigma=sigma,
                age_indices=age_indices,
                age_weights=age_weights):

            # calculate study-specific rate function
            mu = predict_logit_rate(X, alpha, beta, gamma)
            mu_i = rate_for_range(mu, age_indices, age_weights)
            
            tau_i = 1. / (sigma**2 + logit_se**2)
            logp = mc.normal_like(x=value, mu=mu_i, tau=tau_i)
            return logp
github armstrtw / pymc_radon / radon_varying_intercept.py View on Github external
@pymc.stochastic(observed=True)
def y_i(value=y, mu=y_hat, tau=tau_y):
    return pymc.normal_like(value,mu,tau)
github aflaxman / gbd / dismod3 / log_normal_model.py View on Github external
        @mc.observed
        @mc.stochastic(name='obs_%d' % d['id'])
        def obs(f=vars['rate_stoch'],
                age_indices=age_indices,
                age_weights=age_weights,
                value=pl.log(dm.value_per_1(d)),
                tau=se**-2, data=d):
            f_i = dismod3.utils.rate_for_range(f, age_indices, age_weights)
            return mc.normal_like(value, pl.log(f_i), tau)
        vars['observed_rates'].append(obs)
github armstrtw / pymc_radon / radon_varying_slope.py View on Github external
@pymc.stochastic(observed=True)
def y_i(value=y, mu=y_hat, tau=tau_y):
    return pymc.normal_like(value,mu,tau)
github PredictiveScienceLab / pysmc / examples / reaction_kinetics_model.py View on Github external
    @pymc.stochastic(observed=True)
    def output(value=y_obs, mod_out=model_output, sigma=sigma, gamma=1.):
        return gamma * pymc.normal_like(y_obs, mu=mod_out, tau=1/sigma ** 2)
    return locals()

pymc

Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with PyTensor

Apache-2.0
Latest version published 4 days ago

Package Health Score

93 / 100
Full package analysis