Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
@mc.deterministic(name=key)
def rate_stoch(mu=mu):
return mc.invlogit(mu)
@mc.deterministic(name=key)
def rate_stoch(logit_rate=logit_rate):
return interpolate(param_mesh, mc.invlogit(logit_rate), est_mesh)
@mc.deterministic
def C_0(logit_C_0=logit_C_0):
return mc.invlogit(logit_C_0)
# make sure that there is something to observe
if mesh == []:
continue
# uncomment the following line to make more inferences than
# are valid from the data
#gp.observe(M, C, mesh, obs, V)
# uncomment the following 2 lines to make less inferences than
# possible: it may be better to waste information than have
# false confidence
ii = len(mesh)/2
gp.observe(M, C, [mesh[ii]], [obs[ii]], [V[ii]])
x = asrf.fit['out_age_mesh']
na_rate = mc.invlogit(M(x))
asrf.fit['normal_approx'] = list(na_rate)
asrf.save()
return M, C
def theta(a=alpha, b=beta):
"""theta = logit^{-1}(a+b)"""
return pymc.invlogit(a + b * x)
XX_pred = sm.add_constant(X_pred)
model = sm.OLS(Y, XX)
results = model.fit()
Y_pred = model.predict(XX_pred)
pl.plot(X_pred, Y_pred, 'k-', linewidth=2, label='Predicted by OLS')
Y = mc.logit(df['Parameter Value'].__array__())
model = sm.OLS(Y, XX)
results = model.fit()
Y_pred = model.predict(XX_pred)
pl.plot(X_pred, mc.invlogit(Y_pred), 'k--', linewidth=2, label='Predicted by logit-transformed OLS')
pl.xlabel('Age (Years)')
pl.ylabel('Seroprevalence (Per 1)')
pl.legend(loc='lower right', fancybox=True, shadow=True)
pl.axis([-5, 55, 0, 1.2])
pl.grid()
pl.savefig('vzv_forest.pdf')
### setup the generic disease model (without prevalence data)
import dismod3.gbd_disease_model as model
keys = dismod3.utils.gbd_keys(region_list=[region], year_list=[year], sex_list=[sex])
dm.calc_effective_sample_size(dm.data)
dm.vars = model.setup(dm, keys)
## override the birth prevalence prior, based on the withheld prevalence data
logit_C_0 = dm.vars[dismod3.utils.gbd_key_for('bins', region, year, sex)]['initial']['logit_C_0']
assert len(prev_data) == 1, 'should be a single prevalance datum'
d = prev_data[0]
mu_logit_C_0 = mc.logit(dm.value_per_1(d)+dismod3.settings.NEARLY_ZERO)
lb, ub = dm.bounds_per_1(d)
sigma_logit_C_0 = (mc.logit(ub+dismod3.settings.NEARLY_ZERO) - mc.logit(lb+dismod3.settings.NEARLY_ZERO)) / (2 * 1.96)
print 'mu_C_0_pri:', mc.invlogit(mu_logit_C_0)
print 'ui_C_0_pri:', lb, ub
# override the excess-mortality, based on the relative-risk data
mu_rr = 1.01*np.ones(dismod3.settings.MAX_AGE)
sigma_rr = .01*np.ones(dismod3.settings.MAX_AGE)
for d in rr_data:
mu_rr[d['age_start']:(d['age_end']+1)] = dm.value_per_1(d)
sigma_rr[d['age_start']:(d['age_end']+1)] = dm.se_per_1(d)
print 'mu_rr:', mu_rr.round(2)
#print 'sigma_rr:', sigma_rr.round(2)
log_f = dm.vars[dismod3.utils.gbd_key_for('excess-mortality', region, year, sex)]['age_coeffs']
log_f_mesh = log_f.parents['gamma_mesh']
param_mesh = log_f.parents['param_mesh']
m_all = dm.vars[dismod3.utils.gbd_key_for('all-cause_mortality', region, year, sex)]
@mc.deterministic(name=key)
def rate_stoch(logit_rate=logit_rate, age_intervals=aa):
return mc.invlogit(logit_rate(age_intervals))