How to use the pymc.flib function in pymc

To help you get started, we’ve selected a few pymc examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github pymc-devs / pymc3 / pymc / utils.py View on Github external
from numpy import (sqrt, ndarray, asmatrix, array, prod,
                   asarray, atleast_1d, iterable, linspace, diff,
                   around, log10, zeros, arange, digitize, apply_along_axis,
                   concatenate, bincount, sort, hsplit, argsort, inf, shape,
                   ndim, swapaxes, ravel, diag, cov, transpose as tr)

__all__ = ['append', 'check_list', 'autocorr', 'calc_min_interval',
           'check_type', 'ar1',
           'ar1_gen', 'draw_random', 'histogram', 'hpd', 'invcdf',
           'make_indices', 'normcdf', 'quantiles', 'rec_getattr',
           'rec_setattr', 'round_array', 'trace_generator','msqrt','safe_len',
           'log_difference', 'find_generations','crawl_dataless', 'logit',
           'invlogit','stukel_logit','stukel_invlogit','symmetrize','value']

symmetrize = flib.symmetrize

def value(a):
    """
    Returns a.value if a is a Variable, or just a otherwise.
    """
    if isinstance(a, Variable):
        return a.value
    else:
        return a


# =====================================================================
# = Please don't use numpy.vectorize with these! It will leak memory. =
# =====================================================================
def logit(theta):
    return flib.logit(ravel(theta)).reshape(shape(theta))
github pymc-devs / pymc3 / pymc / distributions.py View on Github external
- `p` : Probability of success. :math:`0 < p < 1`.

    :Example:
       >>> from pymc import bernoulli_like
       >>> bernoulli_like([0,1,0,1], .4)
       -2.854232711280291

    .. note::
      - :math:`E(x)= p`
      - :math:`Var(x)= p(1-p)`

    """

    return flib.bernoulli(x, p)

bernoulli_grad_like = {'p' : flib.bern_grad_p}

# Beta----------------------------------------------
@randomwrap
def rbeta(alpha, beta, size=None):
    """
    Random beta variates.
    """

    return np.random.beta(alpha, beta,size)

def beta_expval(alpha, beta):
    """
    Expected value of beta distribution.
    """

    return 1.0 * alpha / (alpha + beta)
github pymc-devs / pymc3 / pymc / diagnostics.py View on Github external
:Example:
        >>> raftery_lewis(x, q=.025, r=.005)
    
    :Reference:
        Raftery, A.E. and Lewis, S.M. (1995).  The number of iterations,
        convergence diagnostics and generic Metropolis algorithms.  In
        Practical Markov Chain Monte Carlo (W.R. Gilks, D.J. Spiegelhalter
        and S. Richardson, eds.). London, U.K.: Chapman and Hall.
        
        See the fortran source file `gibbsit.f` for more details and references.
    """
    if np.rank(x)>1:
        return [raftery_lewis(y, q, r, s, epsilon, verbose) for y in np.transpose(x)]
    
    output = nmin, kthin, nburn, nprec, kmind = pymc.flib.gibbmain(x, q, r, s, epsilon)
    
    if verbose:
        
        print_("\n========================")
        print_("Raftery-Lewis Diagnostic")
        print_("========================")
        print_()
        print_("%s iterations required (assuming independence) to achieve %s accuracy with %i percent probability." % (nmin, r, 100*s))
        print_()
        print_("Thinning factor of %i required to produce a first-order Markov chain." % kthin)
        print_()
        print_("%i iterations to be discarded at the beginning of the simulation (burn-in)." % nburn)
        print_()
        print_("%s subsequent iterations required." % nprec)
        print_()
        print_("Thinning factor of %i required to produce an independence chain." % kmind)
github pymc-devs / pymc3 / pymc / distributions.py View on Github external
:Parameters:
      - `x` : [int] Number of successes, > 0.
      - `n` : [int] Number of Bernoulli trials, > x.
      - `p` : Probability of success in each trial, :math:`p \in [0,1]`.

    .. note::
       - :math:`E(X)=np`
       - :math:`Var(X)=np(1-p)`

    """

    return flib.binomial(x,n,p)


binomial_grad_like = {'p' : flib.binomial_gp}

# Beta----------------------------------------------
@randomwrap
def rbetabin(alpha, beta, n, size=None):
    """
    Random beta-binomial variates.
    """

    phi = np.random.beta(alpha, beta, size)
    return np.random.binomial(n,phi)

def betabin_expval(alpha, beta, n):
    """
    Expected value of beta-binomial distribution.
    """
github pymc-devs / pymc3 / pymc / distributions.py View on Github external
- `x` : x > 0
      - `alpha` : Shape parameter (alpha > 0).
      - `beta` : Scale parameter (beta > 0).

    .. note::

       :math:`E(X)=\frac{\beta}{\alpha-1}`  for :math:`\alpha > 1`
       :math:`Var(X)=\frac{\beta^2}{(\alpha-1)^2(\alpha)}`  for :math:`\alpha > 2`

    """

    return flib.igamma(x, alpha, beta)

inverse_gamma_grad_like = {'value' : flib.igamma_grad_x,
             'alpha' : flib.igamma_grad_alpha,
             'beta' : flib.igamma_grad_beta}

# Inverse Wishart---------------------------------------------------

# def rinverse_wishart(n, C):
#     """
#     Return an inverse Wishart random matrix.

#     :Parameters:
#       - `n` : [int] Degrees of freedom (n > 0).
#       - `C` : Symmetric and positive definite scale matrix
#     """
#     wi = rwishart(n, np.asmatrix(C).I).I
#     flib.symmetrize(wi)
#     return wi

# def inverse_wishart_expval(n, C):
github pymc-devs / pymc3 / pymc / distributions.py View on Github external
:Parameters:
      - `x` : x > 0
      - `mu` : Location parameter.
      - `tau` : Scale parameter (tau > 0).

    .. note::

       :math:`E(X)=e^{\mu+\frac{1}{2\tau}}`
       :math:`Var(X)=(e^{1/\tau}-1)e^{2\mu+\frac{1}{\tau}}`

    """
    return flib.lognormal(x,mu,tau)

lognormal_grad_like = {'value'   : flib.lognormal_gradx,
                       'mu'  : flib.lognormal_gradmu,
                       'tau' : flib.lognormal_gradtau}


# Multinomial----------------------------------------------
#@randomwrap
def rmultinomial(n,p,size=None):
    """
    Random multinomial variates.
    """
    # Leaving size=None as the default means return value is 1d array
    # if not specified-- nicer.

    # Single value for p:
    if len(np.shape(p))==1:
        return np.random.multinomial(n,p,size)

    # Multiple values for p:
github pymc-devs / pymc3 / pymc / distributions.py View on Github external
0.182321556793954

    .. note::
      - :math:`E(X)=\frac{\alpha}{\alpha+\beta}`
      - :math:`Var(X)=\frac{\alpha \beta}{(\alpha+\beta)^2(\alpha+\beta+1)}`

    """
    # try:
    #     constrain(alpha, lower=0, allow_equal=True)
    #     constrain(beta, lower=0, allow_equal=True)
    #     constrain(x, 0, 1, allow_equal=True)
    # except ZeroProbability:
    #     return -np.Inf
    return flib.beta_like(x, alpha, beta)

beta_grad_like = {'value' : flib.beta_grad_x,
                  'alpha' : flib.beta_grad_a,
                  'beta' : flib.beta_grad_b}


# Binomial----------------------------------------------
@randomwrap
def rbinomial(n, p, size=None):
    """
    Random binomial variates.
    """
    # return np.random.binomial(n,p,size)
    return np.random.binomial(np.ravel(n),np.ravel(p),size)

def binomial_expval(n, p):
    """
    Expected value of binomial distribution.
github pymc-devs / pymc3 / pymc / distributions.py View on Github external
:Parameters:
      - `x` : :math:`x \ge 0`
      - `alpha` : alpha > 0
      - `beta` : beta > 0

    .. note::
      - :math:`E(x)=\beta \Gamma(1+\frac{1}{\alpha})`
      - :math:`Var(x)=\beta^2 \Gamma(1+\frac{2}{\alpha} - \mu^2)`

    """
    return flib.weibull(x, alpha, beta)

weibull_grad_like = {'value' : flib.weibull_gx,
                 'alpha' : flib.weibull_ga,
                 'beta' : flib.weibull_gb}

# Wishart---------------------------------------------------

def rwishart(n, Tau):
    """
    Return a Wishart random matrix.

    Tau is the inverse of the 'covariance' matrix :math:`C`.
    """
    p = np.shape(Tau)[0]
    sig = np.linalg.cholesky(Tau)
    if n
github pymc-devs / pymc3 / pymc / distributions.py View on Github external
:Parameters:
      - `x` : x > 0
      - `mu` : Location parameter.
      - `tau` : Scale parameter (tau > 0).

    .. note::

       :math:`E(X)=e^{\mu+\frac{1}{2\tau}}`
       :math:`Var(X)=(e^{1/\tau}-1)e^{2\mu+\frac{1}{\tau}}`

    """
    return flib.lognormal(x,mu,tau)

lognormal_grad_like = {'value'   : flib.lognormal_gradx,
                       'mu'  : flib.lognormal_gradmu,
                       'tau' : flib.lognormal_gradtau}


# Multinomial----------------------------------------------
#@randomwrap
def rmultinomial(n,p,size=None):
    """
    Random multinomial variates.
    """
    # Leaving size=None as the default means return value is 1d array
    # if not specified-- nicer.

    # Single value for p:
    if len(np.shape(p))==1:
        return np.random.multinomial(n,p,size)
github pymc-devs / pymc3 / pymc / distributions.py View on Github external
R"""
    Half-normal log-likelihood, a normal distribution with mean 0 limited
    to the domain :math:`x \in [0, \infty)`.

    .. math::
        f(x \mid \tau) = \sqrt{\frac{2\tau}{\pi}}\exp\left\{ {\frac{-x^2 \tau}{2}}\right\}

    :Parameters:
      - `x` : :math:`x \ge 0`
      - `tau` : tau > 0

    """

    return flib.hnormal(x, tau)

half_normal_grad_like = {'value'   : flib.hnormal_gradx,
                 'tau' : flib.hnormal_gradtau}

# Hypergeometric----------------------------------------------
def rhypergeometric(n, m, N, size=None):
    """
    Returns hypergeometric random variates.
    """
    if n==0:
        return np.zeros(size,dtype=int)
    elif n==N:
        out = np.empty(size,dtype=int)
        out.fill(m)
        return out
    return np.random.hypergeometric(n, N-n, m, size)

def hypergeometric_expval(n, m, N):

pymc

Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with PyTensor

Apache-2.0
Latest version published 10 days ago

Package Health Score

90 / 100
Full package analysis