Find, fix and prevent vulnerabilities in your code.
critical severity
- Vulnerable module: handlebars
- Introduced through: express-handlebars@1.2.2 and handlebars@1.3.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › handlebars@2.0.0Remediation: Upgrade to express-handlebars@2.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › handlebars@1.3.0Remediation: Upgrade to handlebars@3.0.8.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Prototype Pollution. It is possible to add or modify properties to the Object prototype through a malicious template. This may allow attackers to crash the application or execute Arbitrary Code in specific conditions.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade handlebars to version 3.0.8, 4.5.3 or higher.
References
critical severity
- Vulnerable module: socket.io-parser
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-adapter@0.2.0 › socket.io-parser@2.1.2
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-parser@2.2.0Remediation: Upgrade to socket.io@2.2.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-client@1.0.6 › socket.io-parser@2.2.0Remediation: Upgrade to socket.io@2.2.0.
Overview
socket.io-parser is a socket.io protocol parser
Affected versions of this package are vulnerable to Improper Input Validation.
when parsing attachments containing untrusted user input. Attackers can overwrite the _placeholder object to place references to functions in query objects.
PoC
const decoder = new Decoder();
decoder.on("decoded", (packet) => {
console.log(packet.data); // prints [ 'hello', [Function: splice] ]
})
decoder.add('51-["hello",{"_placeholder":true,"num":"splice"}]');
decoder.add(Buffer.from("world"));
Remediation
Upgrade socket.io-parser to version 3.3.3, 3.4.2, 4.0.5, 4.2.1 or higher.
References
high severity
new
- Vulnerable module: qs
- Introduced through: express@3.21.2 and solidus-client@1.4.1
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › qs@4.0.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › body-parser@1.13.3 › qs@4.0.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › solidus-client@1.4.1 › qs@2.4.2
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Allocation of Resources Without Limits or Throttling via improper enforcement of the arrayLimit option in bracket notation parsing. An attacker can exhaust server memory and cause application unavailability by submitting a large number of bracket notation parameters - like a[]=1&a[]=2 - in a single HTTP request.
PoC
const qs = require('qs');
const attack = 'a[]=' + Array(10000).fill('x').join('&a[]=');
const result = qs.parse(attack, { arrayLimit: 100 });
console.log(result.a.length); // Output: 10000 (should be max 100)
Remediation
Upgrade qs to version 6.14.1 or higher.
References
high severity
- Vulnerable module: base64-url
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › express-session@1.11.3 › uid-safe@2.0.0 › base64-url@1.2.1Remediation: Upgrade to express@4.0.0.
Overview
base64-url Base64 encode, decode, escape and unescape for URL applications.
Affected versions of this package are vulnerable to Uninitialized Memory Exposure. An attacker may extract sensitive data from uninitialized memory or may cause a DoS by passing in a large number, in setups where typed user input can be passed (e.g. from JSON).
Details
The Buffer class on Node.js is a mutable array of binary data, and can be initialized with a string, array or number.
const buf1 = new Buffer([1,2,3]);
// creates a buffer containing [01, 02, 03]
const buf2 = new Buffer('test');
// creates a buffer containing ASCII bytes [74, 65, 73, 74]
const buf3 = new Buffer(10);
// creates a buffer of length 10
The first two variants simply create a binary representation of the value it received. The last one, however, pre-allocates a buffer of the specified size, making it a useful buffer, especially when reading data from a stream.
When using the number constructor of Buffer, it will allocate the memory, but will not fill it with zeros. Instead, the allocated buffer will hold whatever was in memory at the time. If the buffer is not zeroed by using buf.fill(0), it may leak sensitive information like keys, source code, and system info.
Remediation
Upgrade base64-url to version 2.0.0 or higher.
Note This is vulnerable only for Node <=4
References
high severity
- Vulnerable module: uglify-js
- Introduced through: handlebars@1.3.0 and express-handlebars@1.2.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › handlebars@1.3.0 › uglify-js@2.3.6Remediation: Upgrade to handlebars@3.0.4.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › handlebars@2.0.0 › uglify-js@2.3.6Remediation: Upgrade to express-handlebars@2.0.0.
Overview
uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.
Tom MacWright discovered that UglifyJS versions 2.4.23 and earlier are affected by a vulnerability which allows a specially crafted Javascript file to have altered functionality after minification. This bug was demonstrated by Yan to allow potentially malicious code to be hidden within secure code, activated by minification.
Details
In Boolean algebra, DeMorgan's laws describe the relationships between conjunctions (&&), disjunctions (||) and negations (!).
In Javascript form, they state that:
!(a && b) === (!a) || (!b)
!(a || b) === (!a) && (!b)
The law does not hold true when one of the values is not a boolean however.
Vulnerable versions of UglifyJS do not account for this restriction, and erroneously apply the laws to a statement if it can be reduced in length by it.
Consider this authentication function:
function isTokenValid(user) {
var timeLeft =
!!config && // config object exists
!!user.token && // user object has a token
!user.token.invalidated && // token is not explicitly invalidated
!config.uninitialized && // config is initialized
!config.ignoreTimestamps && // don't ignore timestamps
getTimeLeft(user.token.expiry); // > 0 if expiration is in the future
// The token must not be expired
return timeLeft > 0;
}
function getTimeLeft(expiry) {
return expiry - getSystemTime();
}
When minified with a vulnerable version of UglifyJS, it will produce the following insecure output, where a token will never expire:
( Formatted for readability )
function isTokenValid(user) {
var timeLeft = !( // negation
!config // config object does not exist
|| !user.token // user object does not have a token
|| user.token.invalidated // token is explicitly invalidated
|| config.uninitialized // config isn't initialized
|| config.ignoreTimestamps // ignore timestamps
|| !getTimeLeft(user.token.expiry) // > 0 if expiration is in the future
);
return timeLeft > 0
}
function getTimeLeft(expiry) {
return expiry - getSystemTime()
}
Remediation
Upgrade UglifyJS to version 2.4.24 or higher.
References
high severity
- Vulnerable module: body-parser
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › body-parser@1.13.3Remediation: Upgrade to express@4.0.0.
Overview
Affected versions of this package are vulnerable to Asymmetric Resource Consumption (Amplification) via the extendedparser and urlencoded functions when the URL encoding process is enabled. An attacker can flood the server with a large number of specially crafted requests.
Remediation
Upgrade body-parser to version 1.20.3 or higher.
References
high severity
- Vulnerable module: engine.io-client
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-client@1.0.6 › engine.io-client@1.3.1Remediation: Upgrade to socket.io@1.4.6.
Overview
engine.io-client, the client for engine.io and socket.io, disables the core SSL/TLS verification checks by default.
This allows an active attacker, for instance one operating a malicious WiFi, to intercept these encrypted connections using the attacker's spoofed certificate and keys. Doing so compromises the data communicated over this channel, as well as allowing an attacker to impersonate both the server and the client during the live session, sending spoofed data to either side.
Remediation
Update to version 1.6.9 or greater.
If a direct dependency update is not possible, use snyk wizard to patch this vulnerability.
References
high severity
- Vulnerable module: handlebars
- Introduced through: express-handlebars@1.2.2 and handlebars@1.3.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › handlebars@2.0.0Remediation: Upgrade to express-handlebars@2.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › handlebars@1.3.0Remediation: Upgrade to handlebars@3.0.8.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Arbitrary Code Execution. The package's lookup helper doesn't validate templates correctly, allowing attackers to submit templates that execute arbitrary JavaScript in the system.
PoC
{{#with split as |a|}}
{{pop (push "alert('Vulnerable Handlebars JS');")}}
{{#with (concat (lookup join (slice 0 1)))}}
{{#each (slice 2 3)}}
{{#with (apply 0 a)}}
{{.}}
{{/with}}
{{/each}}
{{/with}}
{{/with}}
{{/with}}
Remediation
Upgrade handlebars to version 3.0.8, 4.5.3 or higher.
References
high severity
- Vulnerable module: engine.io
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › engine.io@1.3.1Remediation: Upgrade to socket.io@2.5.0.
Overview
engine.io is a realtime engine behind Socket.IO. It provides the foundation of a bidirectional connection between client and server
Affected versions of this package are vulnerable to Denial of Service (DoS) via a POST request to the long polling transport.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
Remediation
Upgrade engine.io to version 3.6.0 or higher.
References
high severity
- Vulnerable module: engine.io
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › engine.io@1.3.1Remediation: Upgrade to socket.io@2.5.0.
Overview
engine.io is a realtime engine behind Socket.IO. It provides the foundation of a bidirectional connection between client and server
Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious client could send a specially crafted HTTP request, triggering an uncaught exception and killing the Node.js process.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
Remediation
Upgrade engine.io to version 3.6.1, 6.2.1 or higher.
References
high severity
- Vulnerable module: fresh
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › fresh@0.3.0Remediation: Upgrade to express@4.15.5.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › fresh@0.3.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › send@0.13.0 › fresh@0.3.0Remediation: Upgrade to express@4.15.5.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-favicon@2.3.2 › fresh@0.3.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-static@1.10.3 › send@0.13.2 › fresh@0.3.0Remediation: Upgrade to express@4.0.0.
Overview
fresh is HTTP response freshness testing.
Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (/ *, */) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade fresh to version 0.5.2 or higher.
References
high severity
- Vulnerable module: minimatch
- Introduced through: glob@3.2.11
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › glob@3.2.11 › minimatch@0.3.0Remediation: Upgrade to glob@5.0.15.
Overview
minimatch is a minimal matching utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via complicated and illegal regexes.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade minimatch to version 3.0.2 or higher.
References
high severity
- Vulnerable module: minimatch
- Introduced through: glob@3.2.11
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › glob@3.2.11 › minimatch@0.3.0Remediation: Upgrade to glob@5.0.15.
Overview
minimatch is a minimal matching utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS).
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade minimatch to version 3.0.2 or higher.
References
high severity
- Vulnerable module: moment
- Introduced through: moment@2.0.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › moment@2.0.0Remediation: Upgrade to moment@2.29.2.
Overview
moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.
Affected versions of this package are vulnerable to Directory Traversal when a user provides a locale string which is directly used to switch moment locale.
Details
A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.
Directory Traversal vulnerabilities can be generally divided into two types:
- Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.
st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.
If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.
curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa
Note %2e is the URL encoded version of . (dot).
- Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as
Zip-Slip.
One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.
The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:
2018-04-15 22:04:29 ..... 19 19 good.txt
2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys
Remediation
Upgrade moment to version 2.29.2 or higher.
References
high severity
- Vulnerable module: negotiator
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › compression@1.5.2 › accepts@1.2.13 › negotiator@0.5.3Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-index@1.7.3 › accepts@1.2.13 › negotiator@0.5.3Remediation: Upgrade to express@4.0.0.
Overview
negotiator is an HTTP content negotiator for Node.js.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS)
when parsing Accept-Language http header.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade negotiator to version 0.6.1 or higher.
References
high severity
- Vulnerable module: parsejson
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-client@1.0.6 › engine.io-client@1.3.1 › parsejson@0.0.1
Overview
parsejson is a method that parses a JSON string and returns a JSON object.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks. An attacker may pass a specially crafted JSON data, causing the server to hang.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
There is no fixed version for parsejson.
References
high severity
- Vulnerable module: qs
- Introduced through: express@3.21.2 and solidus-client@1.4.1
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › qs@4.0.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › body-parser@1.13.3 › qs@4.0.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › solidus-client@1.4.1 › qs@2.4.2
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Override Protection Bypass. By default qs protects against attacks that attempt to overwrite an object's existing prototype properties, such as toString(), hasOwnProperty(),etc.
From qs documentation:
By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use plainObjects as mentioned above, or set allowPrototypes to true which will allow user input to overwrite those properties. WARNING It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten. Always be careful with this option.
Overwriting these properties can impact application logic, potentially allowing attackers to work around security controls, modify data, make the application unstable and more.
In versions of the package affected by this vulnerability, it is possible to circumvent this protection and overwrite prototype properties and functions by prefixing the name of the parameter with [ or ]. e.g. qs.parse("]=toString") will return {toString = true}, as a result, calling toString() on the object will throw an exception.
Example:
qs.parse('toString=foo', { allowPrototypes: false })
// {}
qs.parse("]=toString", { allowPrototypes: false })
// {toString = true} <== prototype overwritten
For more information, you can check out our blog.
Disclosure Timeline
- February 13th, 2017 - Reported the issue to package owner.
- February 13th, 2017 - Issue acknowledged by package owner.
- February 16th, 2017 - Partial fix released in versions
6.0.3,6.1.1,6.2.2,6.3.1. - March 6th, 2017 - Final fix released in versions
6.4.0,6.3.2,6.2.3,6.1.2and6.0.4
Remediation
Upgrade qs to version 6.0.4, 6.1.2, 6.2.3, 6.3.2 or higher.
References
high severity
- Vulnerable module: qs
- Introduced through: express@3.21.2 and solidus-client@1.4.1
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › qs@4.0.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › body-parser@1.13.3 › qs@4.0.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › solidus-client@1.4.1 › qs@2.4.2
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.
Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
Remediation
Upgrade qs to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.
References
high severity
- Vulnerable module: semver
- Introduced through: express-handlebars@1.2.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › semver@3.0.1Remediation: Upgrade to express-handlebars@2.0.0.
Overview
semver is a semantic version parser used by npm.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.
PoC
const semver = require('semver')
const lengths_2 = [2000, 4000, 8000, 16000, 32000, 64000, 128000]
console.log("n[+] Valid range - Test payloads")
for (let i = 0; i =1.2.3' + ' '.repeat(lengths_2[i]) + '<1.3.0';
const start = Date.now()
semver.validRange(value)
// semver.minVersion(value)
// semver.maxSatisfying(["1.2.3"], value)
// semver.minSatisfying(["1.2.3"], value)
// new semver.Range(value, {})
const end = Date.now();
console.log('length=%d, time=%d ms', value.length, end - start);
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade semver to version 5.7.2, 6.3.1, 7.5.2 or higher.
References
high severity
- Vulnerable module: socket.io-parser
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-adapter@0.2.0 › socket.io-parser@2.1.2
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-parser@2.2.0Remediation: Upgrade to socket.io@2.2.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-client@1.0.6 › socket.io-parser@2.2.0Remediation: Upgrade to socket.io@2.2.0.
Overview
socket.io-parser is a socket.io protocol parser
Affected versions of this package are vulnerable to Denial of Service (DoS) via a large packet because a concatenation approach is used.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
Remediation
Upgrade socket.io-parser to version 3.3.2, 3.4.1 or higher.
References
high severity
- Vulnerable module: ws
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › engine.io@1.3.1 › ws@0.4.31Remediation: Upgrade to socket.io@1.5.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-client@1.0.6 › engine.io-client@1.3.1 › ws@0.4.31Remediation: Upgrade to socket.io@1.5.0.
Overview
ws is a WebSocket client and server implementation.
Affected versions of this package did not limit the size of an incoming payload before it was processed by default. As a result, a very large payload (over 256MB in size) could lead to a failed allocation and crash the node process - enabling a Denial of Service attack.
While 256MB may seem excessive, note that the attack is likely to be sent from another server, not an end-user computer, using data-center connection speeds. In those speeds, a payload of this size can be transmitted in seconds.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
Remediation
Update to version 1.1.1 or greater, which sets a default maxPayload of 100MB.
If you cannot upgrade, apply a Snyk patch, or provide ws with options setting the maxPayload to an appropriate size that is smaller than 256MB.
References
high severity
- Vulnerable module: ws
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › engine.io@1.3.1 › ws@0.4.31Remediation: Upgrade to socket.io@1.7.4.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-client@1.0.6 › engine.io-client@1.3.1 › ws@0.4.31Remediation: Upgrade to socket.io@1.7.4.
Overview
ws is a simple to use websocket client, server and console for node.js.
Affected versions of this package are vulnerable to Denial of Service (DoS)
attacks. A specially crafted value of the Sec-WebSocket-Extensions header that used Object.prototype property names as extension or parameter names could be used to make a ws server crash.
PoC:
const WebSocket = require('ws');
const net = require('net');
const wss = new WebSocket.Server({ port: 3000 }, function () {
const payload = 'constructor'; // or ',;constructor'
const request = [
'GET / HTTP/1.1',
'Connection: Upgrade',
'Sec-WebSocket-Key: test',
'Sec-WebSocket-Version: 8',
`Sec-WebSocket-Extensions: ${payload}`,
'Upgrade: websocket',
'\r\n'
].join('\r\n');
const socket = net.connect(3000, function () {
socket.resume();
socket.write(request);
});
});
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
Remediation
Upgrade ws to version 1.1.5, 3.3.1 or higher.
References
high severity
- Vulnerable module: handlebars
- Introduced through: express-handlebars@1.2.2 and handlebars@1.3.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › handlebars@2.0.0Remediation: Upgrade to express-handlebars@2.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › handlebars@1.3.0Remediation: Upgrade to handlebars@3.0.7.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Prototype Pollution. Templates may alter an Objects' prototype, thus allowing an attacker to execute arbitrary code on the server.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade handlebars to version 3.0.7, 4.0.13, 4.1.2 or higher.
References
high severity
- Vulnerable module: handlebars
- Introduced through: express-handlebars@1.2.2 and handlebars@1.3.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › handlebars@2.0.0Remediation: Upgrade to express-handlebars@2.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › handlebars@1.3.0Remediation: Upgrade to handlebars@3.0.8.
Overview
handlebars is a extension to the Mustache templating language.
Affected versions of this package are vulnerable to Prototype Pollution.
Templates may alter an Object's __proto__ and __defineGetter__ properties, which may allow an attacker to execute arbitrary code on the server through crafted payloads.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as _proto_, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named _proto_ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to _proto_.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade handlebars to version 4.3.0, 3.0.8 or higher.
References
high severity
- Vulnerable module: handlebars
- Introduced through: express-handlebars@1.2.2 and handlebars@1.3.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › handlebars@2.0.0Remediation: Upgrade to express-handlebars@3.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › handlebars@1.3.0Remediation: Upgrade to handlebars@4.7.7.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Remote Code Execution (RCE) when selecting certain compiling options to compile templates coming from an untrusted source.
POC
<script src="https://cdn.jsdelivr.net/npm/handlebars@latest/dist/handlebars.js"></script>
<script>
// compile the template
var s = `
{{#with (__lookupGetter__ "__proto__")}}
{{#with (./constructor.getOwnPropertyDescriptor . "valueOf")}}
{{#with ../constructor.prototype}}
{{../../constructor.defineProperty . "hasOwnProperty" ..}}
{{/with}}
{{/with}}
{{/with}}
{{#with "constructor"}}
{{#with split}}
{{pop (push "alert('Vulnerable Handlebars JS when compiling in strict mode');")}}
{{#with .}}
{{#with (concat (lookup join (slice 0 1)))}}
{{#each (slice 2 3)}}
{{#with (apply 0 ../..)}}
{{.}}
{{/with}}
{{/each}}
{{/with}}
{{/with}}
{{/with}}
{{/with}}
`;
var template = Handlebars.compile(s, {
strict: true
});
// execute the compiled template and print the output to the console console.log(template({}));
</script>
Remediation
Upgrade handlebars to version 4.7.7 or higher.
References
medium severity
- Vulnerable module: basic-auth-connect
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › basic-auth-connect@1.0.0Remediation: Upgrade to express@4.0.0.
Overview
basic-auth-connect is a Basic auth middleware for node and connect
Affected versions of this package are vulnerable to Observable Timing Discrepancy due to the use of a timing-unsafe equality comparison. An attacker can infer sensitive data.
Remediation
Upgrade basic-auth-connect to version 1.1.0 or higher.
References
medium severity
- Vulnerable module: morgan
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › morgan@1.6.1Remediation: Upgrade to express@4.0.0.
Overview
morgan is a HTTP request logger middleware for node.js.
Affected versions of this package are vulnerable to Arbitrary Code Injection. An attacker could use the format parameter to inject arbitrary commands.
Remediation
Upgrade morgan to version 1.9.1 or higher.
References
medium severity
- Vulnerable module: handlebars
- Introduced through: express-handlebars@1.2.2 and handlebars@1.3.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › handlebars@2.0.0Remediation: Upgrade to express-handlebars@3.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › handlebars@1.3.0Remediation: Upgrade to handlebars@4.6.0.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Prototype Pollution. Prototype access to the template engine allows for potential code execution.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade handlebars to version 4.6.0 or higher.
References
medium severity
- Vulnerable module: ws
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › engine.io@1.3.1 › ws@0.4.31Remediation: Upgrade to socket.io@1.4.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-client@1.0.6 › engine.io-client@1.3.1 › ws@0.4.31Remediation: Upgrade to socket.io@1.4.1.
Overview
ws is a simple to use websocket client, server and console for node.js.
Affected versions of the package are vulnerable to Uninitialized Memory Exposure.
A client side memory disclosure vulnerability exists in ping functionality of the ws service. When a client sends a ping request and provides an integer value as ping data, it will result in leaking an uninitialized memory buffer.
This is a result of unobstructed use of the Buffer constructor, whose insecure default constructor increases the odds of memory leakage.
ws's ping function uses the default Buffer constructor as-is, making it easy to append uninitialized memory to an existing list. If the value of the buffer list is exposed to users, it may expose raw memory, potentially holding secrets, private data and code.
Proof of Concept:
var ws = require('ws')
var server = new ws.Server({ port: 9000 })
var client = new ws('ws://localhost:9000')
client.on('open', function () {
console.log('open')
client.ping(50) // this makes the client allocate an uninitialized buffer of 50 bytes and send it to the server
client.on('pong', function (data) {
console.log('got pong')
console.log(data)
})
})
Details
The Buffer class on Node.js is a mutable array of binary data, and can be initialized with a string, array or number.
const buf1 = new Buffer([1,2,3]);
// creates a buffer containing [01, 02, 03]
const buf2 = new Buffer('test');
// creates a buffer containing ASCII bytes [74, 65, 73, 74]
const buf3 = new Buffer(10);
// creates a buffer of length 10
The first two variants simply create a binary representation of the value it received. The last one, however, pre-allocates a buffer of the specified size, making it a useful buffer, especially when reading data from a stream.
When using the number constructor of Buffer, it will allocate the memory, but will not fill it with zeros. Instead, the allocated buffer will hold whatever was in memory at the time. If the buffer is not zeroed by using buf.fill(0), it may leak sensitive information like keys, source code, and system info.
Similar vulnerabilities were discovered in request, mongoose, ws and sequelize.
References
medium severity
- Vulnerable module: cookie
- Introduced through: express@3.21.2 and raven@0.6.3
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › cookie@0.1.3Remediation: Upgrade to express@4.21.1.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › cookie@0.1.3Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › cookie-parser@1.3.5 › cookie@0.1.3Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › csurf@1.8.3 › cookie@0.1.3
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › express-session@1.11.3 › cookie@0.1.3Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › raven@0.6.3 › cookie@0.1.0
Overview
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name, path, or domain, which can be used to set unexpected values to other cookie fields.
Workaround
Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade cookie to version 0.7.0 or higher.
References
medium severity
- Vulnerable module: express
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2Remediation: Upgrade to express@4.0.0.
Overview
express is a minimalist web framework.
Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection') through the response.links function. An attacker can inject arbitrary resources into the Link header by using unsanitized input that includes special characters such as commas, semicolons, and angle brackets.
PoC
var express = require('express')
var app = express()
app.get('/', function (req, res) {
res.links({"preload": req.query.resource});
if(req.query.resource){
console.log(res.getHeaders().link)
}
res.send('ok');
});
app.listen(3000);
// note how the query param uses < > to load arbitrary resource
const maliciousQueryParam = '?resource=http://api.example.com/users?resource=>; rel="preload", <http://api.malicious.com/1.js>; rel="preload"; as="script", <http:/api.example.com';
const url = `http://localhost:3000/${maliciousQueryParam}`;
fetch(url);
Remediation
Upgrade express to version 4.0.0-rc1 or higher.
References
medium severity
- Vulnerable module: inflight
- Introduced through: express-handlebars@1.2.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › glob@5.0.15 › inflight@1.0.6
Overview
Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.
Exploiting this vulnerability results in crashing the node process or in the application crash.
Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.
To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.
PoC
const inflight = require('inflight');
function testInflight() {
let i = 0;
function scheduleNext() {
let key = `key-${i++}`;
const callback = () => {
};
for (let j = 0; j < 1000000; j++) {
inflight(key, callback);
}
setImmediate(scheduleNext);
}
if (i % 100 === 0) {
console.log(process.memoryUsage());
}
scheduleNext();
}
testInflight();
Remediation
There is no fixed version for inflight.
References
medium severity
- Vulnerable module: express
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2Remediation: Upgrade to express@4.19.2.
Overview
express is a minimalist web framework.
Affected versions of this package are vulnerable to Open Redirect due to the implementation of URL encoding using encodeurl before passing it to the location header. This can lead to unexpected evaluations of malformed URLs by common redirect allow list implementations in applications, allowing an attacker to bypass a properly implemented allow list and redirect users to malicious sites.
Remediation
Upgrade express to version 4.19.2, 5.0.0-beta.3 or higher.
References
medium severity
- Vulnerable module: moment
- Introduced through: moment@2.0.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › moment@2.0.0Remediation: Upgrade to moment@2.15.2.
Overview
moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.
Affected versions of the package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks for any locale that has separate format and standalone options and format input can be controlled by the user.
An attacker can provide a specially crafted input to the format function, which nearly matches the pattern being matched. This will cause the regular expression matching to take a long time, all the while occupying the event loop and preventing it from processing other requests and making the server unavailable (a Denial of Service attack).
Disclosure Timeline
- October 19th, 2016 - Reported the issue to package owner.
- October 19th, 2016 - Issue acknowledged by package owner.
- October 24th, 2016 - Issue fixed and version
2.15.2released.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
References
medium severity
- Vulnerable module: handlebars
- Introduced through: express-handlebars@1.2.2 and handlebars@1.3.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › handlebars@2.0.0Remediation: Upgrade to express-handlebars@3.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › handlebars@1.3.0Remediation: Upgrade to handlebars@4.7.7.
Overview
handlebars is an extension to the Mustache templating language.
Affected versions of this package are vulnerable to Prototype Pollution when selecting certain compiling options to compile templates coming from an untrusted source.
POC
<script src="https://cdn.jsdelivr.net/npm/handlebars@latest/dist/handlebars.js"></script>
<script>
// compile the template
var s2 = `{{'a/.") || alert("Vulnerable Handlebars JS when compiling in compat mode'}}`;
var template = Handlebars.compile(s2, {
compat: true
});
// execute the compiled template and print the output to the console console.log(template({}));
</script>
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade handlebars to version 4.7.7 or higher.
References
medium severity
- Vulnerable module: minimist
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › mkdirp@0.5.1 › minimist@0.0.8Remediation: Upgrade to express@4.0.0.
Overview
minimist is a parse argument options module.
Affected versions of this package are vulnerable to Prototype Pollution. The library could be tricked into adding or modifying properties of Object.prototype using a constructor or __proto__ payload.
PoC by Snyk
require('minimist')('--__proto__.injected0 value0'.split(' '));
console.log(({}).injected0 === 'value0'); // true
require('minimist')('--constructor.prototype.injected1 value1'.split(' '));
console.log(({}).injected1 === 'value1'); // true
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade minimist to version 0.2.1, 1.2.3 or higher.
References
medium severity
- Vulnerable module: underscore
- Introduced through: solidus-client@1.4.1
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › solidus-client@1.4.1 › underscore@1.6.0
Overview
underscore is a JavaScript's functional programming helper library.
Affected versions of this package are vulnerable to Arbitrary Code Injection via the template function, particularly when the variable option is taken from _.templateSettings as it is not sanitized.
PoC
const _ = require('underscore');
_.templateSettings.variable = "a = this.process.mainModule.require('child_process').execSync('touch HELLO')";
const t = _.template("")();
Remediation
Upgrade underscore to version 1.13.0-2, 1.12.1 or higher.
References
medium severity
- Vulnerable module: handlebars
- Introduced through: express-handlebars@1.2.2 and handlebars@1.3.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › handlebars@2.0.0Remediation: Upgrade to express-handlebars@3.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › handlebars@1.3.0Remediation: Upgrade to handlebars@4.0.0.
Overview
handlebars provides the power necessary to let you build semantic templates.
When using attributes without quotes in a handlebars template, an attacker can manipulate the input to introduce additional attributes, potentially executing code. This may lead to a Cross-site Scripting (XSS) vulnerability, assuming an attacker can influence the value entered into the template. If the handlebars template is used to render user-generated content, this vulnerability may escalate to a persistent XSS vulnerability.
Details
Cross-Site Scripting (XSS) attacks occur when an attacker tricks a user’s browser to execute malicious JavaScript code in the context of a victim’s domain. Such scripts can steal the user’s session cookies for the domain, scrape or modify its content, and perform or modify actions on the user’s behalf, actions typically blocked by the browser’s Same Origin Policy.
These attacks are possible by escaping the context of the web application and injecting malicious scripts in an otherwise trusted website. These scripts can introduce additional attributes (say, a "new" option in a dropdown list or a new link to a malicious site) and can potentially execute code on the clients side, unbeknown to the victim. This occurs when characters like < > " ' are not escaped properly.
There are a few types of XSS:
- Persistent XSS is an attack in which the malicious code persists into the web app’s database.
- Reflected XSS is an which the website echoes back a portion of the request. The attacker needs to trick the user into clicking a malicious link (for instance through a phishing email or malicious JS on another page), which triggers the XSS attack.
- DOM-based XSS is an that occurs purely in the browser when client-side JavaScript echoes back a portion of the URL onto the page. DOM-Based XSS is notoriously hard to detect, as the server never gets a chance to see the attack taking place.
Example:
Assume handlebars was used to display user comments and avatar, using the following template:
<img src={{avatarUrl}}><pre>{{comment}}</pre>
If an attacker spoofed their avatar URL and provided the following value:
http://evil.org/avatar.png onload=alert(document.cookie)
The resulting HTML would be the following, triggering the script once the image loads:
<img src=http://evil.org/avatar.png onload=alert(document.cookie)><pre>Gotcha!</pre>
References
medium severity
- Vulnerable module: minimatch
- Introduced through: glob@3.2.11
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › glob@3.2.11 › minimatch@0.3.0Remediation: Upgrade to glob@5.0.15.
Overview
minimatch is a minimal matching utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the braceExpand function in minimatch.js.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade minimatch to version 3.0.5 or higher.
References
medium severity
- Vulnerable module: moment
- Introduced through: moment@2.0.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › moment@2.0.0Remediation: Upgrade to moment@2.11.2.
Overview
moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.
An attacker can provide a long value to the duration function, which nearly matches the pattern being matched. This will cause the regular expression matching to take a long time, all the while occupying the event loop and preventing it from processing other requests and making the server unavailable (a Denial of Service attack).
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade moment to version 2.11.2 or greater.
References
medium severity
- Vulnerable module: semver
- Introduced through: express-handlebars@1.2.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › semver@3.0.1Remediation: Upgrade to express-handlebars@2.0.0.
Overview
semver is a semantic version parser used by npm.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The semver module uses regular expressions when parsing a version string. For a carefully crafted input, the time it takes to process these regular expressions is not linear to the length of the input. Since the semver module did not enforce a limit on the version string length, an attacker could provide a long string that would take up a large amount of resources, potentially taking a server down. This issue therefore enables a potential Denial of Service attack.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade semver to version 4.3.2 or higher.
References
medium severity
- Vulnerable module: socket.io
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6Remediation: Upgrade to socket.io@2.4.0.
Overview
socket.io is a node.js realtime framework server.
Affected versions of this package are vulnerable to Insecure Defaults due to CORS Misconfiguration. All domains are whitelisted by default.
Remediation
Upgrade socket.io to version 2.4.0 or higher.
References
medium severity
- Vulnerable module: uglify-js
- Introduced through: handlebars@1.3.0 and express-handlebars@1.2.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › handlebars@1.3.0 › uglify-js@2.3.6Remediation: Upgrade to handlebars@4.0.12.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › handlebars@2.0.0 › uglify-js@2.3.6Remediation: Upgrade to express-handlebars@3.0.0.
Overview
uglify-js is a JavaScript parser, minifier, compressor and beautifier toolkit.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the string_template and the decode_template functions.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade uglify-js to version 3.14.3 or higher.
References
medium severity
- Vulnerable module: uglify-js
- Introduced through: handlebars@1.3.0 and express-handlebars@1.2.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › handlebars@1.3.0 › uglify-js@2.3.6Remediation: Upgrade to handlebars@3.0.4.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express-handlebars@1.2.2 › handlebars@2.0.0 › uglify-js@2.3.6Remediation: Upgrade to express-handlebars@2.0.0.
Overview
The parse() function in the uglify-js package prior to version 2.6.0 is vulnerable to regular expression denial of service (ReDoS) attacks when long inputs of certain patterns are processed.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade to version 2.6.0 or greater.
If a direct dependency update is not possible, use snyk wizard to patch this vulnerability.
References
medium severity
- Vulnerable module: ws
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › engine.io@1.3.1 › ws@0.4.31Remediation: Upgrade to socket.io@1.7.3.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-client@1.0.6 › engine.io-client@1.3.1 › ws@0.4.31Remediation: Upgrade to socket.io@1.7.3.
Overview
ws is a simple to use websocket client, server and console for node.js.
Affected versions of the package use the cryptographically insecure Math.random() which can produce predictable values and should not be used in security-sensitive context.
Details
Computers are deterministic machines, and as such are unable to produce true randomness. Pseudo-Random Number Generators (PRNGs) approximate randomness algorithmically, starting with a seed from which subsequent values are calculated.
There are two types of PRNGs: statistical and cryptographic. Statistical PRNGs provide useful statistical properties, but their output is highly predictable and forms an easy to reproduce numeric stream that is unsuitable for use in cases where security depends on generated values being unpredictable. Cryptographic PRNGs address this problem by generating output that is more difficult to predict. For a value to be cryptographically secure, it must be impossible or highly improbable for an attacker to distinguish between it and a truly random value. In general, if a PRNG algorithm is not advertised as being cryptographically secure, then it is probably a statistical PRNG and should not be used in security-sensitive contexts.
You can read more about node's insecure Math.random() in Mike Malone's post.
Remediation
Upgrade ws to version 1.1.2 or higher.
References
medium severity
- Vulnerable module: ws
- Introduced through: socket.io@1.0.6
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › engine.io@1.3.1 › ws@0.4.31Remediation: Upgrade to socket.io@2.3.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › socket.io@1.0.6 › socket.io-client@1.0.6 › engine.io-client@1.3.1 › ws@0.4.31Remediation: Upgrade to socket.io@2.4.0.
Overview
ws is a simple to use websocket client, server and console for node.js.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). A specially crafted value of the Sec-Websocket-Protocol header can be used to significantly slow down a ws server.
##PoC
for (const length of [1000, 2000, 4000, 8000, 16000, 32000]) {
const value = 'b' + ' '.repeat(length) + 'x';
const start = process.hrtime.bigint();
value.trim().split(/ *, */);
const end = process.hrtime.bigint();
console.log('length = %d, time = %f ns', length, end - start);
}
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ws to version 7.4.6, 6.2.2, 5.2.3 or higher.
References
medium severity
- Vulnerable module: express
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2Remediation: Upgrade to express@4.20.0.
Overview
express is a minimalist web framework.
Affected versions of this package are vulnerable to Cross-site Scripting due to improper handling of user input in the response.redirect method. An attacker can execute arbitrary code by passing malicious input to this method.
Note
To exploit this vulnerability, the following conditions are required:
The attacker should be able to control the input to
response.redirect()express must not redirect before the template appears
the browser must not complete redirection before:
the user must click on the link in the template
Remediation
Upgrade express to version 4.20.0, 5.0.0 or higher.
References
medium severity
- Vulnerable module: express
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2Remediation: Upgrade to express@4.0.0.
Overview
express is a minimalist web framework.
Affected versions of this package are vulnerable to Open Redirect via the location() method in response.js.
Notes:
Express 3 has reached End-of-Life and will not receive any updates to address this issue.
This vulnerability is achievable only when: a request path begins with double slashes
//and a relative path for redirection begins with./and is provided from user-controlled input and theLocationheader is set with that user-controlled input.
Remediation
Upgrade express to version 4.0.0 or higher.
References
medium severity
- Vulnerable module: on-headers
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › on-headers@1.0.2Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › compression@1.5.2 › on-headers@1.0.2Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › connect-timeout@1.6.2 › on-headers@1.0.2Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › express-session@1.11.3 › on-headers@1.0.2Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › morgan@1.6.1 › on-headers@1.0.2Remediation: Upgrade to express@4.0.0.
Overview
Affected versions of this package are vulnerable to Improper Handling of Unexpected Data Type via the response.writeHead function. An attacker can manipulate HTTP response headers by passing an array to this function, potentially leading to unintended disclosure or modification of header information.
Workaround
This vulnerability can be mitigated by passing an object to response.writeHead() instead of an array.
Remediation
Upgrade on-headers to version 1.1.0 or higher.
References
low severity
- Vulnerable module: debug
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › debug@2.2.0Remediation: Upgrade to express@4.15.5.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › debug@2.2.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › send@0.13.0 › debug@2.2.0Remediation: Upgrade to express@4.15.5.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › body-parser@1.13.3 › debug@2.2.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › compression@1.5.2 › debug@2.2.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › connect-timeout@1.6.2 › debug@2.2.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › express-session@1.11.3 › debug@2.2.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › finalhandler@0.4.0 › debug@2.2.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › morgan@1.6.1 › debug@2.2.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-index@1.7.3 › debug@2.2.0Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-static@1.10.3 › send@0.13.2 › debug@2.2.0Remediation: Upgrade to express@4.0.0.
Overview
debug is a small debugging utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the function useColors via manipulation of the str argument.
The vulnerability can cause a very low impact of about 2 seconds of matching time for data 50k characters long.
Note: CVE-2017-20165 is a duplicate of this vulnerability.
PoC
Use the following regex in the %o formatter.
/\s*\n\s*/
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade debug to version 2.6.9, 3.1.0, 3.2.7, 4.3.1 or higher.
References
low severity
- Vulnerable module: mime
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › send@0.13.0 › mime@1.3.4Remediation: Upgrade to express@4.16.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-static@1.10.3 › send@0.13.2 › mime@1.3.4Remediation: Upgrade to express@4.0.0.
Overview
mime is a comprehensive, compact MIME type module.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex /.*[\.\/\\]/ in its lookup, which can cause a slowdown of 2 seconds for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mime to version 1.4.1, 2.0.3 or higher.
References
low severity
- Vulnerable module: minimist
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › mkdirp@0.5.1 › minimist@0.0.8Remediation: Upgrade to express@4.0.0.
Overview
minimist is a parse argument options module.
Affected versions of this package are vulnerable to Prototype Pollution due to a missing handler to Function.prototype.
Notes:
This vulnerability is a bypass to CVE-2020-7598
The reason for the different CVSS between CVE-2021-44906 to CVE-2020-7598, is that CVE-2020-7598 can pollute objects, while CVE-2021-44906 can pollute only function.
PoC by Snyk
require('minimist')('--_.constructor.constructor.prototype.foo bar'.split(' '));
console.log((function(){}).foo); // bar
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade minimist to version 0.2.4, 1.2.6 or higher.
References
low severity
- Vulnerable module: moment
- Introduced through: moment@2.0.0
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › moment@2.0.0Remediation: Upgrade to moment@2.19.3.
Overview
moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (/[0-9]*['a-z\u00A0-\u05FF\u0700-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF]+|[\u0600-\u06FF\/]+(\s*?[\u0600-\u06FF]+){1,2}/i) in order to parse dates specified as strings. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade moment to version 2.19.3 or higher.
References
low severity
- Vulnerable module: ms
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to express@4.15.3.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › send@0.13.0 › ms@0.7.1Remediation: Upgrade to express@4.15.3.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › send@0.13.0 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to express@4.15.3.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › connect-timeout@1.6.2 › ms@0.7.1Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › body-parser@1.13.3 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › compression@1.5.2 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › connect-timeout@1.6.2 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › express-session@1.11.3 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › finalhandler@0.4.0 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › morgan@1.6.1 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-index@1.7.3 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-static@1.10.3 › send@0.13.2 › ms@0.7.1Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-static@1.10.3 › send@0.13.2 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-favicon@2.3.2 › ms@0.7.2Remediation: Upgrade to express@4.0.0.
Overview
ms is a tiny millisecond conversion utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms() function.
Proof of concept
ms = require('ms');
ms('1'.repeat(9998) + 'Q') // Takes about ~0.3s
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author. Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on Regular Expression Denial of Service (ReDoS) attacks, go to our blog.
Disclosure Timeline
- Feb 9th, 2017 - Reported the issue to package owner.
- Feb 11th, 2017 - Issue acknowledged by package owner.
- April 12th, 2017 - Fix PR opened by Snyk Security Team.
- May 15th, 2017 - Vulnerability published.
- May 16th, 2017 - Issue fixed and version
2.0.0released. - May 21th, 2017 - Patches released for versions
>=0.7.1, <=1.0.0.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ms to version 2.0.0 or higher.
References
low severity
- Vulnerable module: send
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-static@1.10.3 › send@0.13.2Remediation: Upgrade to express@4.0.0.
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › send@0.13.0Remediation: Upgrade to express@4.20.0.
Overview
send is a Better streaming static file server with Range and conditional-GET support
Affected versions of this package are vulnerable to Cross-site Scripting due to improper user input sanitization passed to the SendStream.redirect() function, which executes untrusted code. An attacker can execute arbitrary code by manipulating the input parameters to this method.
Note:
Exploiting this vulnerability requires the following:
The attacker needs to control the input to
response.redirect()Express MUST NOT redirect before the template appears
The browser MUST NOT complete redirection before
The user MUST click on the link in the template
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade send to version 0.19.0, 1.1.0 or higher.
References
low severity
- Vulnerable module: serve-static
- Introduced through: express@3.21.2
Detailed paths
-
Introduced through: solidus@solidusjs/solidus#73573137e2795dc7fef0a705c1c359a0d24ab6a6 › express@3.21.2 › connect@2.30.2 › serve-static@1.10.3Remediation: Upgrade to express@4.0.0.
Overview
serve-static is a server.
Affected versions of this package are vulnerable to Cross-site Scripting due to improper sanitization of user input in the redirect function. An attacker can manipulate the redirection process by injecting malicious code into the input.
Note
To exploit this vulnerability, the following conditions are required:
The attacker should be able to control the input to
response.redirect()express must not redirect before the template appears
the browser must not complete redirection before:
the user must click on the link in the template
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade serve-static to version 1.16.0, 2.1.0 or higher.