Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
@validate('colors')
def _validate_colors(self, proposal):
if type(proposal['value']) is dict or type(self.vertices) is dict:
return proposal['value']
required = self.vertices.size // 3 # (x, y, z) triplet per 1 color
actual = proposal['value'].size
if actual != 0 and required != actual:
raise TraitError('colors has wrong size: %s (%s required)' % (actual, required))
return proposal['value']
found = Bool()
class ArgSpec(Reference):
args = List(Unicode)
varargs = Unicode()
varkw = Unicode()
defaults = List()
class Status(Reference):
execution_state = Enum((u'busy', u'idle', u'starting'))
class CompleteReply(Reference):
matches = List(Unicode)
cursor_start = Integer()
cursor_end = Integer()
status = Unicode()
class LanguageInfo(Reference):
name = Unicode()
version = Unicode(sys.version.split()[0])
class KernelInfoReply(Reference):
protocol_version = Version(min='5.0')
implementation = Unicode()
implementation_version = Version()
language_info = Dict()
banner = Unicode()
def check(self, d):
async def test_adaptive_scaling():
# XXX: we should be able to use `InProcessClusterManager` here, but due to
# https://github.com/dask/distributed/issues/3251 this results in periodic
# failures.
config = Config()
config.DaskGateway.backend_class = LocalTestingBackend
config.ClusterConfig.adaptive_period = 0.25
async with temp_gateway(config=config) as g:
async with g.gateway_client() as gateway:
async with gateway.new_cluster() as cluster:
# Turn on adaptive scaling
await cluster.adapt()
# Worker is automatically requested
async with cluster.get_client(set_as_default=False) as client:
res = await client.submit(lambda x: x + 1, 1)
assert res == 2
# Scales down automatically
await wait_for_workers(cluster, exact=0)
resume_epoch = Int(0, config=True, help="Epoch to resume (requires using also '--resume_path'.")
coco_path = Unicode(u"/tmp/aa/coco", config=True, help="path to local coco dataset path")
init_inception = Bool(True, config=True, help="Initialize the inception networks using the paper's base network.")
#
# Network hyper parameters
#
base_network_name = Unicode("Inception3", config=True, help="Name of base network to use.")
avgpool_kernel = Int(10, config=True,
help="Size of the last avgpool layer in the Resnet. Should match the cropsize.")
classifier_name = Unicode("Inception3Classifier", config=True, help="Name of classifier to use.")
sets_network_name = Unicode("SetOpsResModule", config=True, help="Name of setops module to use.")
sets_block_name = Unicode("SetopResBlock_v1", config=True, help="Name of setops network to use.")
sets_basic_block_name = Unicode("SetopResBasicBlock", config=True,
help="Name of the basic setops block to use (where applicable).")
ops_layer_num = Int(1, config=True, help="Ops Module layers num.")
ops_latent_dim = Int(1024, config=True, help="Ops Module inner latent dim.")
setops_dropout = Float(0, config=True, help="Dropout ratio of setops module.")
crop_size = Int(299, config=True, help="Size of input crop (Resnet 224, inception 299).")
scale_size = Int(350, config=True, help="Size of input scale for data augmentation. default: 350")
paper_reproduce = Bool(False, config=True, help="Use paper reproduction settings. default: False")
discriminator_name = Unicode("AmitDiscriminator", config=True,
help="Name of discriminator (unseen classifier) to use. default: AmitDiscriminator")
embedding_dim = Int(2048, config=True, help="Dimensionality of the LaSO space. default:2048")
classifier_latent_dim = Int(2048, config=True, help="Dimensionality of the classifier latent space. default:2048")
def run(self):
#
# Setup the model
#
base_model, classifier, setops_model = self.setup_model()
class IsCompleteReplyIncomplete(Reference):
indent = Unicode()
# IOPub messages
class ExecuteInput(Reference):
code = Unicode()
execution_count = Integer()
Error = ExecuteReplyError
class Stream(Reference):
name = Enum((u'stdout', u'stderr'))
text = Unicode()
class DisplayData(MimeBundle):
pass
class ExecuteResult(MimeBundle):
execution_count = Integer()
class HistoryReply(Reference):
history = List(List())
class ClearOutput(Reference):
wait = Bool()
def test_mixed_handlers_values():
handlers = [
logging.NullHandler(),
1
]
with pytest.raises(TraitError):
HasHandlers(
handlers=handlers
)
created_files,
'enable should create files in {}'.format(dirs['conf']))
# a bit of a hack to allow initializing a new app instance
for klass in app_classes:
reset_app_class(klass)
# do disable
main_app(argv=['disable'] + argv)
# check the config directory
conf_enabled = [
path for path in created_files
if path.startswith(conf_dir) and os.path.exists(path)]
for path in conf_enabled:
with open(path, 'r') as f:
conf = Config(json.load(f))
nbapp = conf.get('NotebookApp', {})
if 'server_extensions' in nbapp:
nt.assert_not_in(
'jupyter_nbextensions_configurator',
nbapp.server_extensions,
'conf after disable should empty'
'server_extensions list in file {}'.format(path))
nbservext = nbapp.get('nbserver_extensions', {})
nt.assert_false(
{k: v for k, v in nbservext.items() if v},
'disable command should disable all '
'nbserver_extensions in file {}'.format(path))
reset_app_class(DisableJupyterNbextensionsConfiguratorApp)
async def test_slurm_backend():
c = Config()
c.SlurmClusterConfig.scheduler_cmd = "/opt/miniconda/bin/dask-gateway-scheduler"
c.SlurmClusterConfig.worker_cmd = "/opt/miniconda/bin/dask-gateway-worker"
c.SlurmClusterConfig.scheduler_memory = "256M"
c.SlurmClusterConfig.worker_memory = "256M"
c.SlurmClusterConfig.scheduler_cores = 1
c.SlurmClusterConfig.worker_cores = 1
c.DaskGateway.backend_class = SlurmTestingBackend
async with temp_gateway(config=c) as g:
auth = BasicAuth(username="alice")
async with g.gateway_client(auth=auth) as gateway:
async with gateway.new_cluster() as cluster:
db_cluster = g.gateway.backend.db.get_cluster(cluster.name)
async def test_idle_timeout(tmpdir):
config = Config()
config.DaskGateway.cluster_manager_class = InProcessClusterManager
config.DaskGateway.temp_dir = str(tmpdir)
config.InProcessClusterManager.idle_timeout = 2
async with temp_gateway(config=config) as gateway_proc:
async with Gateway(
address=gateway_proc.public_urls.connect_url,
proxy_address=gateway_proc.gateway_urls.connect_url,
asynchronous=True,
) as gateway:
# Start a cluster
cluster = await gateway.new_cluster()
# Add some workers
await cluster.scale(2)
await wait_for_workers(cluster, atleast=1)
waited = 0
from .timeunit import TimeUnit
class RangeFilter(BaseObject):
"""Wrapper for Vega-Lite RangeFilter definition.
Attributes
----------
field: Unicode
Field to be filtered.
range: List(Union(CFloat, DateTime))
Array of inclusive minimum and maximum values for a field value of a data item to be included in the filtered data.
timeUnit: TimeUnit
time unit for the field to be filtered.
"""
field = T.Unicode(allow_none=True, default_value=None, help="""Field to be filtered.""")
range = T.List(T.Union([T.CFloat(allow_none=True, default_value=None), T.Instance(DateTime, allow_none=True, default_value=None)]), allow_none=True, default_value=None, maxlen=2, minlen=2, help="""Array of inclusive minimum and maximum values for a field value of a data item to be included in the filtered data.""")
timeUnit = TimeUnit(allow_none=True, default_value=None, help="""time unit for the field to be filtered.""")
def __init__(self, field=None, range=None, timeUnit=None, **kwargs):
kwds = dict(field=field, range=range, timeUnit=timeUnit)
kwargs.update({k:v for k, v in kwds.items() if v is not None})
super(RangeFilter, self).__init__(**kwargs)