Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
found = Bool()
class ArgSpec(Reference):
args = List(Unicode)
varargs = Unicode()
varkw = Unicode()
defaults = List()
class Status(Reference):
execution_state = Enum((u'busy', u'idle', u'starting'))
class CompleteReply(Reference):
matches = List(Unicode)
cursor_start = Integer()
cursor_end = Integer()
status = Unicode()
class LanguageInfo(Reference):
name = Unicode()
version = Unicode(sys.version.split()[0])
class KernelInfoReply(Reference):
protocol_version = Version(min='5.0')
implementation = Unicode()
implementation_version = Version()
language_info = Dict()
banner = Unicode()
def check(self, d):
4 red
>>> encoder = vaex.ml.OneHotEncoder(features=['color'])
>>> encoder.fit_transform(df)
# color color_blue color_green color_red
0 red 0 0 1
1 green 0 1 0
2 green 0 1 0
3 blue 1 0 0
4 red 0 0 1
'''
# title = Unicode(default_value='One-Hot Encoder', read_only=True).tag(ui='HTML')
prefix = traitlets.Unicode(default_value='', help=help_prefix).tag(ui='Text')
one = traitlets.Any(1, help='Value to encode when a category is present.')
zero = traitlets.Any(0, help='Value to encode when category is absent.')
uniques_ = traitlets.List(traitlets.List(), help='The unique elements found in each feature.').tag(output=True)
def fit(self, df):
'''Fit OneHotEncoder to the DataFrame.
:param df: A vaex DataFrame.
'''
uniques = []
for i in self.features:
expression = _ensure_strings_from_expressions(i)
unique = df.unique(expression)
unique = np.sort(unique) # this can/should be optimized with @delay
uniques.append(unique.tolist())
self.uniques_ = uniques
def transform(self, df):
from traitlets.config import LoggingConfigurable
from traitlets import List, Unicode, Integer, Bool
from nbformat import current_nbformat, read as read_nb
from textwrap import fill, dedent
from nbconvert.filters import ansi2html, strip_ansi
from .preprocessors import Execute, ClearOutput, CheckCellMetadata
from . import utils
from nbformat.notebooknode import NotebookNode
import typing
class Validator(LoggingConfigurable):
preprocessors = List([
CheckCellMetadata,
ClearOutput,
Execute
])
indent = Unicode(
" ",
help="A string containing whitespace that will be used to indent code and errors"
).tag(config=True)
width = Integer(
90,
help="Maximum line width for displaying code/errors"
).tag(config=True)
invert = Bool(
import asyncio, asyncssh
import os
import signal
from textwrap import dedent
import warnings
import random
from traitlets import Any, Bool, Dict, Unicode, Integer, List, default, observe, validate
from jupyterhub.spawner import Spawner
from jupyterhub.utils import maybe_future
class SSHSpawner(Spawner):
remote_hosts = List(Unicode(),
help=dedent("""
Remote hosts available for spawning notebook servers.
List of remote hosts where notebook servers can be spawned. By
default, the remote host used to spawn a notebook is selected at
random from this list. The `remote_host_selector()` attribute can
be used to customize the selection algorithm, possibly attempting
to balance load across all the hosts.
If this list contains a single remote host, that host will always
be selected (unless `remote_host_selector()` does something weird
like just return some other value). That would be appropriate if
there is just one remote host available, or, if the remote host is
itself a load balancer or is doing round-robin DNS.
"""),
config=True)
useRawDomain: Bool
Uses the source data range as scale domain instead of aggregated data for aggregate axis.
"""
bandSize = T.Union([T.CFloat(allow_none=True, default_value=None), BandSize(allow_none=True, default_value=None)])
barSizeRange = T.List(T.CFloat(), allow_none=True, default_value=None, help="""Default range for bar size scale.""")
fontSizeRange = T.List(T.CFloat(), allow_none=True, default_value=None, help="""Default range for font size scale.""")
nominalColorRange = T.Union([T.Unicode(allow_none=True, default_value=None), T.List(T.Unicode(), allow_none=True, default_value=None)])
opacity = T.List(T.CFloat(), allow_none=True, default_value=None, help="""Default range for opacity.""")
padding = T.CFloat(allow_none=True, default_value=None, help="""Default padding for `x` and `y` ordinal scales.""")
pointSizeRange = T.List(T.CFloat(), allow_none=True, default_value=None, help="""Default range for bar size scale.""")
round = T.Bool(allow_none=True, default_value=None, help="""If true, rounds numeric output values to integers.""")
ruleSizeRange = T.List(T.CFloat(), allow_none=True, default_value=None, help="""Default range for rule stroke widths.""")
sequentialColorRange = T.Union([T.Unicode(allow_none=True, default_value=None), T.List(T.Unicode(), allow_none=True, default_value=None)])
shapeRange = T.Union([T.Unicode(allow_none=True, default_value=None), T.List(T.Unicode(), allow_none=True, default_value=None)])
textBandWidth = T.CFloat(allow_none=True, default_value=None, min=0, help="""Default band width for `x` ordinal scale when is mark is `text`.""")
tickSizeRange = T.List(T.CFloat(), allow_none=True, default_value=None, help="""Default range for tick spans.""")
useRawDomain = T.Bool(allow_none=True, default_value=None, help="""Uses the source data range as scale domain instead of aggregated data for aggregate axis.""")
def __init__(self, bandSize=None, barSizeRange=None, fontSizeRange=None, nominalColorRange=None, opacity=None, padding=None, pointSizeRange=None, round=None, ruleSizeRange=None, sequentialColorRange=None, shapeRange=None, textBandWidth=None, tickSizeRange=None, useRawDomain=None, **kwargs):
kwds = dict(bandSize=bandSize, barSizeRange=barSizeRange, fontSizeRange=fontSizeRange, nominalColorRange=nominalColorRange, opacity=opacity, padding=padding, pointSizeRange=pointSizeRange, round=round, ruleSizeRange=ruleSizeRange, sequentialColorRange=sequentialColorRange, shapeRange=shapeRange, textBandWidth=textBandWidth, tickSizeRange=tickSizeRange, useRawDomain=useRawDomain)
kwargs.update({k:v for k, v in kwds.items() if v is not None})
super(ScaleConfig, self).__init__(**kwargs)
os.path.join(get_ipython_dir(), 'profile_default', 'static'),
DEFAULT_STATIC_FILES_PATH)
]
extra_template_paths = List(Unicode(), config=True,
help="""Extra paths to search for serving jinja templates.
Can be used to override templates from notebook.templates."""
)
@property
def template_file_path(self):
"""return extra paths + the default locations"""
return self.extra_template_paths + DEFAULT_TEMPLATE_PATH_LIST
extra_nbextensions_path = List(Unicode(), config=True,
help="""extra paths to look for Javascript notebook extensions"""
)
@property
def nbextensions_path(self):
"""The path to look for Javascript notebook extensions"""
path = self.extra_nbextensions_path + jupyter_path('nbextensions')
# FIXME: remove IPython nbextensions path once migration is setup
path.append(os.path.join(get_ipython_dir(), 'nbextensions'))
return path
websocket_url = Unicode("", config=True,
help="""The base URL for websockets,
if it differs from the HTTP server (hint: it almost certainly doesn't).
Should be in the form of an HTTP origin: ws[s]://hostname[:port]
min = Float(allow_none=True, default_value=None).tag(sync=True)
max = Float(allow_none=True, default_value=None).tag(sync=True)
@register
class Data(Widget):
"""A data widget."""
# _view_name = Unicode('DataView').tag(sync=True)
_model_name = Unicode('DataModel').tag(sync=True)
_view_module = Unicode('odysis').tag(sync=True)
_model_module = Unicode('odysis').tag(sync=True)
_view_module_version = Unicode(odysis_version).tag(sync=True)
_model_module_version = Unicode(odysis_version).tag(sync=True)
name = Unicode().tag(sync=True)
components = List(Instance(Component)).tag(sync=True, **widget_serialization)
class BlockType():
pass
@register
class Block(Widget, BlockType):
_view_name = Unicode('BlockView').tag(sync=True)
_model_name = Unicode('BlockModel').tag(sync=True)
_view_module = Unicode('odysis').tag(sync=True)
_model_module = Unicode('odysis').tag(sync=True)
_view_module_version = Unicode(odysis_version).tag(sync=True)
_model_module_version = Unicode(odysis_version).tag(sync=True)
_blocks = List(Instance(BlockType)).tag(sync=True, **widget_serialization)
from .gist import GistService, model_to_files
from .bundle.bundlenbmanager import BundleNotebookManager
from .dispatch import dispatch_method
from .util import _path_split
_missing = object()
class GistMiddleware(LoggingConfigurable):
"""
This middleware will save to github if the notebook metadata contains a
gist_id.
This requires that the Gist is owned by an account we control.
"""
github_accounts = List(Tuple, config=True,
help="List of Tuple(github_account, github_password)")
oauth_token = Unicode(config=True)
def __init__(self, *args, **kwargs):
super(GistMiddleware, self).__init__(*args, **kwargs)
self.service = GistService()
if self.oauth_token:
self.service.oauth_login(token=self.oauth_token)
for user, pw in self.github_accounts:
self.service.login(user, pw)
def post_save(self, nbm, local_path, model, path):
height: CFloat
layers: List(UnitSpec)
Unit specs that will be layered.
name: Unicode
Name of the visualization for later reference.
transform: Transform
An object describing filter and new field calculation.
width: CFloat
"""
config = T.Instance(Config, allow_none=True, default_value=None, help="""Configuration object.""")
data = T.Instance(Data, allow_none=True, default_value=None, help="""An object describing the data source.""")
description = T.Unicode(allow_none=True, default_value=None, help="""An optional description of this mark for commenting purpose.""")
height = T.CFloat(allow_none=True, default_value=None)
layers = T.List(T.Instance(UnitSpec), allow_none=True, default_value=None, help="""Unit specs that will be layered.""")
name = T.Unicode(allow_none=True, default_value=None, help="""Name of the visualization for later reference.""")
transform = T.Instance(Transform, allow_none=True, default_value=None, help="""An object describing filter and new field calculation.""")
width = T.CFloat(allow_none=True, default_value=None)
def __init__(self, config=None, data=None, description=None, height=None, layers=None, name=None, transform=None, width=None, **kwargs):
kwds = dict(config=config, data=data, description=description, height=height, layers=layers, name=name, transform=transform, width=width)
kwargs.update({k:v for k, v in kwds.items() if v is not None})
super(LayerSpec, self).__init__(**kwargs)
atom_labels_shown = traitlets.Bool(False).tag(sync=True)
background_color = traitlets.Unicode('#545c85').tag(sync=True)
background_opacity = traitlets.Float(1.0).tag(sync=True)
cubefile = traitlets.Unicode().tag(sync=True)
far_clip = traitlets.Float().tag(sync=True)
height = traitlets.Unicode(sync=True)
labels = traitlets.List([]).tag(sync=True)
model_data = traitlets.Dict({}).tag(sync=True)
near_clip = traitlets.Float().tag(sync=True)
outline_color = traitlets.Unicode('#000000').tag(sync=True)
outline_width = traitlets.Float(0.0).tag(sync=True)
positions = traitlets.List([]).tag(sync=True)
selected_atom_indices = traitlets.List().tag(sync=True)
selection_type = traitlets.Unicode('Atom', choices=['Atom', 'Residue', 'Chain']).tag(sync=True)
shapes = traitlets.List([]).tag(sync=True)
styles = traitlets.Dict({}).tag(sync=True)
volumetric_style = traitlets.Dict({}).tag(sync=True)
width = traitlets.Unicode(sync=True)
SHAPE_NAMES = {
'SPHERE': 'Sphere',
'ARROW': 'Arrow',
'CYLINDER': 'Cylinder',
}
STYLE_NAMES = {'vdw': 'sphere',
'licorice': 'stick',
'line': 'line',
'ribbon': 'cartoon',
None: None}