How to use stable-baselines - 10 common examples

To help you get started, we’ve selected a few stable-baselines examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github harvard-edge / quarl / stable-baselines / stable_baselines / common / distributions.py View on Github external
def sample(self):
        return tf.stack([p.sample() for p in self.categoricals], axis=-1)

    @classmethod
    def fromflat(cls, flat):
        """
        Create an instance of this from new logits values

        :param flat: ([float]) the multi categorical logits input
        :return: (ProbabilityDistribution) the instance from the given multi categorical input
        """
        raise NotImplementedError


class DiagGaussianProbabilityDistribution(ProbabilityDistribution):
    def __init__(self, flat):
        """
        Probability distributions from multivariate Gaussian input

        :param flat: ([float]) the multivariate Gaussian input data
        """
        self.flat = flat
        mean, logstd = tf.split(axis=len(flat.shape) - 1, num_or_size_splits=2, value=flat)
        self.mean = mean
        self.logstd = logstd
        self.std = tf.exp(logstd)
        super(DiagGaussianProbabilityDistribution, self).__init__()

    def flatparam(self):
        return self.flat
github harvard-edge / quarl / stable-baselines / stable_baselines / common / distributions.py View on Github external
# a categorical distribution (see http://amid.fish/humble-gumbel)
        uniform = tf.random_uniform(tf.shape(self.logits), dtype=self.logits.dtype)
        return tf.argmax(self.logits - tf.log(-tf.log(uniform)), axis=-1)

    @classmethod
    def fromflat(cls, flat):
        """
        Create an instance of this from new logits values

        :param flat: ([float]) the categorical logits input
        :return: (ProbabilityDistribution) the instance from the given categorical input
        """
        return cls(flat)


class MultiCategoricalProbabilityDistribution(ProbabilityDistribution):
    def __init__(self, nvec, flat):
        """
        Probability distributions from multicategorical input

        :param nvec: ([int]) the sizes of the different categorical inputs
        :param flat: ([float]) the categorical logits input
        """
        self.flat = flat
        self.categoricals = list(map(CategoricalProbabilityDistribution, tf.split(flat, nvec, axis=-1)))
        super(MultiCategoricalProbabilityDistribution, self).__init__()

    def flatparam(self):
        return self.flat

    def mode(self):
        return tf.stack([p.mode() for p in self.categoricals], axis=-1)
github harvard-edge / quarl / stable-baselines / stable_baselines / common / distributions.py View on Github external
def __init__(self, nvec, flat):
        """
        Probability distributions from multicategorical input

        :param nvec: ([int]) the sizes of the different categorical inputs
        :param flat: ([float]) the categorical logits input
        """
        self.flat = flat
        self.categoricals = list(map(CategoricalProbabilityDistribution, tf.split(flat, nvec, axis=-1)))
        super(MultiCategoricalProbabilityDistribution, self).__init__()
github harvard-edge / quarl / stable-baselines / stable_baselines / common / distributions.py View on Github external
def __init__(self, nvec, flat):
        """
        Probability distributions from multicategorical input

        :param nvec: ([int]) the sizes of the different categorical inputs
        :param flat: ([float]) the categorical logits input
        """
        self.flat = flat
        self.categoricals = list(map(CategoricalProbabilityDistribution, tf.split(flat, nvec, axis=-1)))
        super(MultiCategoricalProbabilityDistribution, self).__init__()
github harvard-edge / quarl / stable-baselines / stable_baselines / common / distributions.py View on Github external
def __init__(self, flat):
        """
        Probability distributions from multivariate Gaussian input

        :param flat: ([float]) the multivariate Gaussian input data
        """
        self.flat = flat
        mean, logstd = tf.split(axis=len(flat.shape) - 1, num_or_size_splits=2, value=flat)
        self.mean = mean
        self.logstd = logstd
        self.std = tf.exp(logstd)
        super(DiagGaussianProbabilityDistribution, self).__init__()
github harvard-edge / quarl / stable-baselines / stable_baselines / common / base_class.py View on Github external
serialized_params = file_.read("parameters")
                    params = bytes_to_params(
                        serialized_params, parameter_list
                    )
        except zipfile.BadZipFile:
            # load_path wasn't a zip file. Possibly a cloudpickle
            # file. Show a warning and fall back to loading cloudpickle.
            warnings.warn("It appears you are loading from a file with old format. " +
                          "Older cloudpickle format has been replaced with zip-archived " +
                          "models. Consider saving the model with new format.",
                          DeprecationWarning)
            # Attempt loading with the cloudpickle format.
            # If load_path is file-like, seek back to beginning of file
            if not isinstance(load_path, str):
                load_path.seek(0)
            data, params = BaseRLModel._load_from_file_cloudpickle(load_path)

        return data, params
github harvard-edge / quarl / stable-baselines / stable_baselines / common / base_class.py View on Github external
def _save_to_file(save_path, data=None, params=None, cloudpickle=False):
        """Save model to a zip archive or cloudpickle file.

        :param save_path: (str or file-like) Where to store the model
        :param data: (OrderedDict) Class parameters being stored
        :param params: (OrderedDict) Model parameters being stored
        :param cloudpickle: (bool) Use old cloudpickle format
            (stable-baselines<=2.7.0) instead of a zip archive.
        """
        if cloudpickle:
            BaseRLModel._save_to_file_cloudpickle(save_path, data, params)
        else:
            BaseRLModel._save_to_file_zip(save_path, data, params)
github harvard-edge / quarl / stable-baselines / stable_baselines / common / base_class.py View on Github external
"(n_env, {}) for the observation shape.".format(len(observation_space.nvec)))
        elif isinstance(observation_space, gym.spaces.MultiBinary):
            if observation.shape == (observation_space.n,):
                return False
            elif len(observation.shape) == 2 and observation.shape[1] == observation_space.n:
                return True
            else:
                raise ValueError("Error: Unexpected observation shape {} for MultiBinary ".format(observation.shape) +
                                 "environment, please use ({},) or ".format(observation_space.n) +
                                 "(n_env, {}) for the observation shape.".format(observation_space.n))
        else:
            raise ValueError("Error: Cannot determine if the observation is vectorized with the space type {}."
                             .format(observation_space))


class ActorCriticRLModel(BaseRLModel):
    """
    The base class for Actor critic model

    :param policy: (BasePolicy) Policy object
    :param env: (Gym environment) The environment to learn from
                (if registered in Gym, can be str. Can be None for loading trained models)
    :param verbose: (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug
    :param policy_base: (BasePolicy) the base policy used by this method (default=ActorCriticPolicy)
    :param requires_vec_env: (bool) Does this model require a vectorized environment
    :param policy_kwargs: (dict) additional arguments to be passed to the policy on creation
    :param seed: (int) Seed for the pseudo-random generators (python, numpy, tensorflow).
        If None (default), use random seed. Note that if you want completely deterministic
        results, you must set `n_cpu_tf_sess` to 1.
    :param n_cpu_tf_sess: (int) The number of threads for TensorFlow operations
        If None, the number of cpu of the current machine will be used.
    """
github harvard-edge / quarl / stable-baselines / stable_baselines / common / base_class.py View on Github external
def _save_to_file(save_path, data=None, params=None, cloudpickle=False):
        """Save model to a zip archive or cloudpickle file.

        :param save_path: (str or file-like) Where to store the model
        :param data: (OrderedDict) Class parameters being stored
        :param params: (OrderedDict) Model parameters being stored
        :param cloudpickle: (bool) Use old cloudpickle format
            (stable-baselines<=2.7.0) instead of a zip archive.
        """
        if cloudpickle:
            BaseRLModel._save_to_file_cloudpickle(save_path, data, params)
        else:
            BaseRLModel._save_to_file_zip(save_path, data, params)
github harvard-edge / quarl / stable-baselines / stable_baselines / common / base_class.py View on Github external
raise ValueError("The specified policy kwargs do not equal the stored policy kwargs. "
                             "Stored kwargs: {}, specified kwargs: {}".format(data['policy_kwargs'],
                                                                              kwargs['policy_kwargs']))

        model = cls(policy=data["policy"], env=None, _init_setup_model=False)
        model.__dict__.update(data)
        model.__dict__.update(kwargs)
        model.set_env(env)
        model.setup_model()

        model.load_parameters(params)

        return model


class OffPolicyRLModel(BaseRLModel):
    """
    The base class for off policy RL model

    :param policy: (BasePolicy) Policy object
    :param env: (Gym environment) The environment to learn from
                (if registered in Gym, can be str. Can be None for loading trained models)
    :param replay_buffer: (ReplayBuffer) the type of replay buffer
    :param verbose: (int) the verbosity level: 0 none, 1 training information, 2 tensorflow debug
    :param requires_vec_env: (bool) Does this model require a vectorized environment
    :param policy_base: (BasePolicy) the base policy used by this method
    :param policy_kwargs: (dict) additional arguments to be passed to the policy on creation
    :param seed: (int) Seed for the pseudo-random generators (python, numpy, tensorflow).
        If None (default), use random seed. Note that if you want completely deterministic
        results, you must set `n_cpu_tf_sess` to 1.
    :param n_cpu_tf_sess: (int) The number of threads for TensorFlow operations
        If None, the number of cpu of the current machine will be used.

stable-baselines

A fork of OpenAI Baselines, implementations of reinforcement learning algorithms.

MIT
Latest version published 4 years ago

Package Health Score

57 / 100
Full package analysis