How to use the stable-baselines.stable_baselines.common.distributions.CategoricalProbabilityDistribution function in stable-baselines

To help you get started, we’ve selected a few stable-baselines examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github harvard-edge / quarl / stable-baselines / stable_baselines / common / distributions.py View on Github external
def __init__(self, nvec, flat):
        """
        Probability distributions from multicategorical input

        :param nvec: ([int]) the sizes of the different categorical inputs
        :param flat: ([float]) the categorical logits input
        """
        self.flat = flat
        self.categoricals = list(map(CategoricalProbabilityDistribution, tf.split(flat, nvec, axis=-1)))
        super(MultiCategoricalProbabilityDistribution, self).__init__()
github harvard-edge / quarl / stable-baselines / stable_baselines / common / distributions.py View on Github external
def __init__(self, logits):
        """
        Probability distributions from categorical input

        :param logits: ([float]) the categorical logits input
        """
        self.logits = logits
        super(CategoricalProbabilityDistribution, self).__init__()
github harvard-edge / quarl / stable-baselines / stable_baselines / common / distributions.py View on Github external
def probability_distribution_class(self):
        return CategoricalProbabilityDistribution

stable-baselines

A fork of OpenAI Baselines, implementations of reinforcement learning algorithms.

MIT
Latest version published 4 years ago

Package Health Score

57 / 100
Full package analysis