How to use the stable-baselines.stable_baselines.common.distributions.DiagGaussianProbabilityDistribution function in stable-baselines

To help you get started, we’ve selected a few stable-baselines examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github harvard-edge / quarl / stable-baselines / stable_baselines / common / distributions.py View on Github external
def __init__(self, flat):
        """
        Probability distributions from multivariate Gaussian input

        :param flat: ([float]) the multivariate Gaussian input data
        """
        self.flat = flat
        mean, logstd = tf.split(axis=len(flat.shape) - 1, num_or_size_splits=2, value=flat)
        self.mean = mean
        self.logstd = logstd
        self.std = tf.exp(logstd)
        super(DiagGaussianProbabilityDistribution, self).__init__()
github harvard-edge / quarl / stable-baselines / stable_baselines / common / distributions.py View on Github external
def kl(self, other):
        assert isinstance(other, DiagGaussianProbabilityDistribution)
        return tf.reduce_sum(other.logstd - self.logstd + (tf.square(self.std) + tf.square(self.mean - other.mean)) /
                             (2.0 * tf.square(other.std)) - 0.5, axis=-1)
github harvard-edge / quarl / stable-baselines / stable_baselines / common / distributions.py View on Github external
def probability_distribution_class(self):
        return DiagGaussianProbabilityDistribution

stable-baselines

A fork of OpenAI Baselines, implementations of reinforcement learning algorithms.

MIT
Latest version published 4 years ago

Package Health Score

57 / 100
Full package analysis