Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
text_features = ["model"]
mapper = DataFrameMapper(
[(numeric_features, [ContinuousDomain()])] +
[([f], [CategoricalDomain(), PMMLLabelEncoder()]) for f in categorical_features] +
[(f, [CategoricalDomain(), CountVectorizer(tokenizer=Splitter(), max_features=5)]) for f in text_features]
)
pipeline = PMMLPipeline([
("mapper", mapper),
("model", LGBMRegressor(n_estimators=1000))
])
# use model__sample_weight for weight
pipeline.fit(data, data["hwy"], model__categorical_feature=[3, 4])
sklearn2pmml(pipeline, "test/support/python/lightgbm_regression.pmml")
print(pipeline.predict(data[:10]))
def test_sklearn2pmml(self):
# Export to PMML
pipeline = PMMLPipeline([
("classifier", self.ref)
])
pipeline.fit(self.train[0], self.train[1])
sklearn2pmml(pipeline, "tree_sklearn2pmml.pmml", with_repr = True)
try:
# Import PMML
model = PMMLTreeClassifier(pmml='tree_sklearn2pmml.pmml')
# Verify classification
Xte, _ = self.test
assert np.array_equal(
self.ref.predict_proba(Xte),
model.predict_proba(Xte)
)
finally:
remove("tree_sklearn2pmml.pmml")
def test_sklearn2pmml(self):
# Export to PMML
pipeline = PMMLPipeline([
("classifier", self.ref)
])
pipeline.fit(self.test[0], self.test[1])
sklearn2pmml(pipeline, "forest_sklearn2pmml.pmml", with_repr = True)
try:
# Import PMML
model = PMMLForestClassifier(pmml='forest_sklearn2pmml.pmml')
# Verify classification
Xte, _ = self.test
assert np.array_equal(
self.ref.predict_proba(Xte),
model.predict_proba(Xte)
)
finally:
remove("forest_sklearn2pmml.pmml")
text_features = []
mapper = DataFrameMapper(
[(numeric_features, [ContinuousDomain()])] +
[([f], [CategoricalDomain(), PMMLLabelEncoder()]) for f in categorical_features] +
[(f, [CategoricalDomain(), CountVectorizer(tokenizer=Splitter())]) for f in text_features]
)
pipeline = PMMLPipeline([
("mapper", mapper),
("model", LGBMClassifier(n_estimators=1000))
])
pipeline.fit(data, data["drv"], model__categorical_feature=[3])
suffix = "binary" if binary else "multiclass"
sklearn2pmml(pipeline, "test/support/python/lightgbm_" + suffix + ".pmml")
print(list(pipeline.predict(data[:10])))
print(list(pipeline.predict_proba(data[0:1])[0]))
categorical_features = ["drv", "class"]
text_features = ["model"]
mapper = DataFrameMapper(
[(numeric_features, [ContinuousDomain()])] +
[([f], [CategoricalDomain(), OneHotEncoder()]) for f in categorical_features] +
[(f, [CategoricalDomain(), CountVectorizer(tokenizer=Splitter(), max_features=5)]) for f in text_features]
)
pipeline = PMMLPipeline([
("mapper", mapper),
("model", LinearRegression())
])
pipeline.fit(data, data["hwy"])
sklearn2pmml(pipeline, "test/support/python/linear_regression_text.pmml")
print(list(pipeline.predict(data[:10])))
def setUp(self):
iris = load_iris()
X = iris.data.astype(np.float64)
y = iris.target.astype(np.int32)
model = RandomForestClassifier(max_depth=4)
model.fit(X, y)
params = {'copyright': 'Václav Čadek', 'model_name': 'Iris Model'}
self.model = model
self.pmml = sklearn2pmml(self.model, **params)
self.num_trees = len(self.model.estimators_)
self.num_inputs = model.n_features_
self.num_outputs = model.n_classes_
self.features = ['x{}'.format(i) for i in range(self.num_inputs)]
self.class_names = ['y{}'.format(i) for i in range(self.num_outputs)]
pipeline = PMMLPipeline([
("mapper", FeatureUnion([
("scalar_mapper", scalar_mapper),
("interaction", Pipeline([
("interaction_mapper", interaction_mapper),
("polynomial", PolynomialFeatures())
]))
])),
("classifier", classifier)
])
pipeline.fit(audit_X, audit_y)
pipeline.configure(compact = True)
pipeline.verify(audit_X.sample(100), zeroThreshold = 1e-6, precision = 1e-6)
sklearn2pmml(pipeline, "pmml/XGBoostAudit.pmml")
if "--deploy" in sys.argv:
from openscoring import Openscoring
os = Openscoring("http://localhost:8080/openscoring")
os.deployFile("XGBoostAudit", "pmml/XGBoostAudit.pmml")
predict_proba_transformer = Pipeline([
("expression", ExpressionTransformer("X[1]")),
("cut", Alias(CutTransformer(bins = [0.0, 0.75, 0.90, 1.0], labels = ["no", "maybe", "yes"]), "Decision", prefit = True))
])
pipeline = PMMLPipeline([
("local_mapper", mapper),
("uploader", H2OFrameCreator()),
("remote_classifier", classifier)
], predict_proba_transformer = predict_proba_transformer)
pipeline.fit(audit_X, H2OFrame(audit_y.to_frame(), column_types = ["categorical"]))
pipeline.verify(audit_X.sample(100))
sklearn2pmml(pipeline, "pmml/RandomForestAudit.pmml")
if "--deploy" in sys.argv:
from openscoring import Openscoring
os = Openscoring("http://localhost:8080/openscoring")
os.deployFile("RandomForestAudit", "pmml/RandomForestAudit.pmml")
def saveAsPMML(data, modelPath):
"""
利用sklearn2pmml将模型存储为PMML
"""
model = PMMLPipeline([
("regressor", linear_model.LinearRegression())])
model.fit(data[["x"]], data["y"])
sklearn2pmml(model, "linear.pmml", with_repr=True)