Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
from sklearn2pmml.decoration import ContinuousDomain, CategoricalDomain
from sklearn2pmml.pipeline import PMMLPipeline
from sklearn2pmml.preprocessing import PMMLLabelEncoder
from sklearn2pmml.feature_extraction.text import Splitter
from sklearn_pandas import DataFrameMapper
data = pd.read_csv("test/support/mpg.csv")
numeric_features = ["displ", "year", "cyl"]
categorical_features = ["drv", "class"]
text_features = ["model"]
mapper = DataFrameMapper(
[(numeric_features, [ContinuousDomain()])] +
[([f], [CategoricalDomain(), PMMLLabelEncoder()]) for f in categorical_features] +
[(f, [CategoricalDomain(), CountVectorizer(tokenizer=Splitter(), max_features=5)]) for f in text_features]
)
pipeline = PMMLPipeline([
("mapper", mapper),
("model", LGBMRegressor(n_estimators=1000))
])
# use model__sample_weight for weight
pipeline.fit(data, data["hwy"], model__categorical_feature=[3, 4])
sklearn2pmml(pipeline, "test/support/python/lightgbm_regression.pmml")
print(pipeline.predict(data[:10]))
from sklearn_pandas import DataFrameMapper
binary = False
data = pd.read_csv("test/support/mpg.csv")
if binary:
data["drv"] = data["drv"].replace("r", "4")
numeric_features = ["displ", "year", "cyl"]
categorical_features = ["class"]
text_features = []
mapper = DataFrameMapper(
[(numeric_features, [ContinuousDomain()])] +
[([f], [CategoricalDomain(), PMMLLabelEncoder()]) for f in categorical_features] +
[(f, [CategoricalDomain(), CountVectorizer(tokenizer=Splitter())]) for f in text_features]
)
pipeline = PMMLPipeline([
("mapper", mapper),
("model", LGBMClassifier(n_estimators=1000))
])
pipeline.fit(data, data["drv"], model__categorical_feature=[3])
suffix = "binary" if binary else "multiclass"
sklearn2pmml(pipeline, "test/support/python/lightgbm_" + suffix + ".pmml")
print(list(pipeline.predict(data[:10])))
print(list(pipeline.predict_proba(data[0:1])[0]))
from sklearn2pmml import sklearn2pmml
from sklearn2pmml.decoration import ContinuousDomain, CategoricalDomain
from sklearn2pmml.pipeline import PMMLPipeline
from sklearn2pmml.feature_extraction.text import Splitter
from sklearn_pandas import DataFrameMapper
data = pd.read_csv("test/support/mpg.csv")
numeric_features = ["displ", "year", "cyl"]
categorical_features = ["drv", "class"]
text_features = ["model"]
mapper = DataFrameMapper(
[(numeric_features, [ContinuousDomain()])] +
[([f], [CategoricalDomain(), OneHotEncoder()]) for f in categorical_features] +
[(f, [CategoricalDomain(), CountVectorizer(tokenizer=Splitter(), max_features=5)]) for f in text_features]
)
pipeline = PMMLPipeline([
("mapper", mapper),
("model", LinearRegression())
])
pipeline.fit(data, data["hwy"])
sklearn2pmml(pipeline, "test/support/python/linear_regression_text.pmml")
print(list(pipeline.predict(data[:10])))