How to use the sklearn2pmml.pipeline.PMMLPipeline function in sklearn2pmml

To help you get started, we’ve selected a few sklearn2pmml examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github iamDecode / sklearn-pmml-model / tests / ensemble / test_forest.py View on Github external
def test_sklearn2pmml(self):
    # Export to PMML
    pipeline = PMMLPipeline([
      ("classifier", self.ref)
    ])
    pipeline.fit(self.test[0], self.test[1])

    sklearn2pmml(pipeline, "forest_sklearn2pmml.pmml", with_repr = True)

    try:
      # Import PMML
      model = PMMLForestClassifier(pmml='forest_sklearn2pmml.pmml')

      # Verify classification
      Xte, _ = self.test
      assert np.array_equal(
        self.ref.predict_proba(Xte),
        model.predict_proba(Xte)
      )
github ankane / eps / test / support / python / lightgbm_regression.py View on Github external
from sklearn2pmml.feature_extraction.text import Splitter
from sklearn_pandas import DataFrameMapper

data = pd.read_csv("test/support/mpg.csv")

numeric_features = ["displ", "year", "cyl"]
categorical_features = ["drv", "class"]
text_features = ["model"]

mapper = DataFrameMapper(
  [(numeric_features, [ContinuousDomain()])] +
  [([f], [CategoricalDomain(), PMMLLabelEncoder()]) for f in categorical_features] +
  [(f, [CategoricalDomain(), CountVectorizer(tokenizer=Splitter(), max_features=5)]) for f in text_features]
)

pipeline = PMMLPipeline([
  ("mapper", mapper),
  ("model", LGBMRegressor(n_estimators=1000))
])
# use model__sample_weight for weight
pipeline.fit(data, data["hwy"], model__categorical_feature=[3, 4])

sklearn2pmml(pipeline, "test/support/python/lightgbm_regression.pmml")

print(pipeline.predict(data[:10]))
github ankane / eps / test / support / python / lightgbm_classification.py View on Github external
data = pd.read_csv("test/support/mpg.csv")
if binary:
  data["drv"] = data["drv"].replace("r", "4")

numeric_features = ["displ", "year", "cyl"]
categorical_features = ["class"]
text_features = []

mapper = DataFrameMapper(
  [(numeric_features, [ContinuousDomain()])] +
  [([f], [CategoricalDomain(), PMMLLabelEncoder()]) for f in categorical_features] +
  [(f, [CategoricalDomain(), CountVectorizer(tokenizer=Splitter())]) for f in text_features]
)

pipeline = PMMLPipeline([
  ("mapper", mapper),
  ("model", LGBMClassifier(n_estimators=1000))
])
pipeline.fit(data, data["drv"], model__categorical_feature=[3])

suffix = "binary" if binary else "multiclass"
sklearn2pmml(pipeline, "test/support/python/lightgbm_" + suffix + ".pmml")

print(list(pipeline.predict(data[:10])))
print(list(pipeline.predict_proba(data[0:1])[0]))
github ankane / eps / test / support / python / linear_regression.py View on Github external
from sklearn2pmml.feature_extraction.text import Splitter
from sklearn_pandas import DataFrameMapper

data = pd.read_csv("test/support/mpg.csv")

numeric_features = ["displ", "year", "cyl"]
categorical_features = ["drv", "class"]
text_features = ["model"]

mapper = DataFrameMapper(
  [(numeric_features, [ContinuousDomain()])] +
  [([f], [CategoricalDomain(), OneHotEncoder()]) for f in categorical_features] +
  [(f, [CategoricalDomain(), CountVectorizer(tokenizer=Splitter(), max_features=5)]) for f in text_features]
)

pipeline = PMMLPipeline([
  ("mapper", mapper),
  ("model", LinearRegression())
])
pipeline.fit(data, data["hwy"])

sklearn2pmml(pipeline, "test/support/python/linear_regression_text.pmml")

print(list(pipeline.predict(data[:10])))
github iamDecode / sklearn-pmml-model / tests / tree / test_tree.py View on Github external
def test_sklearn2pmml(self):
    # Export to PMML
    pipeline = PMMLPipeline([
      ("classifier", self.ref)
    ])
    pipeline.fit(self.train[0], self.train[1])
    sklearn2pmml(pipeline, "tree_sklearn2pmml.pmml", with_repr = True)

    try:
      # Import PMML
      model = PMMLTreeClassifier(pmml='tree_sklearn2pmml.pmml')

      # Verify classification
      Xte, _ = self.test
      assert np.array_equal(
        self.ref.predict_proba(Xte),
        model.predict_proba(Xte)
      )
github openscoring / papis.io / RuleSetIris.py View on Github external
import pandas
import sys

iris_df = pandas.read_csv("csv/Iris.csv")
#print(iris_df.head(5))

iris_X = iris_df[iris_df.columns.difference(["Species"])]
iris_y = iris_df["Species"]

classifier = RuleSetClassifier([
	("X['Petal_Length'] < 2.45", "setosa"),
	("X['Petal_Width'] < 1.75", "versicolor"),
], default_score = "virginica")

pipeline = PMMLPipeline([
	("classifier", classifier)
])
pipeline.fit(iris_X, iris_y)

sklearn2pmml(pipeline, "pmml/RuleSetIris.pmml")

if "--deploy" in sys.argv:
	from openscoring import Openscoring

	os = Openscoring("http://localhost:8080/openscoring")
	os.deployFile("RuleSetIris", "pmml/RuleSetIris.pmml")
github openscoring / papis.io / RandomForestAudit.py View on Github external
("Gender", CategoricalDomain()),
	("Marital", CategoricalDomain()),
	("Occupation", CategoricalDomain()),
	("Age", [ContinuousDomain(), CutTransformer(bins = [17, 28, 37, 47, 83], labels = ["q1", "q2", "q3", "q4"])]),
	("Hours", ContinuousDomain()),
	("Income", ContinuousDomain()),
	(["Hours", "Income"], Alias(ExpressionTransformer("X[1] / (X[0] * 52)"), "Hourly_Income"))
])
classifier = H2ORandomForestEstimator(ntrees = 17)

predict_proba_transformer = Pipeline([
	("expression", ExpressionTransformer("X[1]")),
	("cut", Alias(CutTransformer(bins = [0.0, 0.75, 0.90, 1.0], labels = ["no", "maybe", "yes"]), "Decision", prefit = True))
])

pipeline = PMMLPipeline([
	("local_mapper", mapper),
	("uploader", H2OFrameCreator()),
	("remote_classifier", classifier)
], predict_proba_transformer = predict_proba_transformer)
pipeline.fit(audit_X, H2OFrame(audit_y.to_frame(), column_types = ["categorical"]))

pipeline.verify(audit_X.sample(100))

sklearn2pmml(pipeline, "pmml/RandomForestAudit.pmml")

if "--deploy" in sys.argv:
	from openscoring import Openscoring

	os = Openscoring("http://localhost:8080/openscoring")
	os.deployFile("RandomForestAudit", "pmml/RandomForestAudit.pmml")
github openscoring / papis.io / XGBoostAudit.py View on Github external
scalar_mapper = DataFrameMapper([
	("Education", [CategoricalDomain(), LabelBinarizer(), SelectKBest(chi2, k = 3)]),
	("Employment", [CategoricalDomain(), LabelBinarizer(), SelectKBest(chi2, k = 3)]),
	("Occupation", [CategoricalDomain(), LabelBinarizer(), SelectKBest(chi2, k = 3)]),
	("Age", [ContinuousDomain(), CutTransformer(bins = [17, 28, 37, 47, 83], labels = ["q1", "q2", "q3", "q4"]), LabelBinarizer()]),
	("Hours", ContinuousDomain()),
	("Income", ContinuousDomain()),
	(["Hours", "Income"], Alias(ExpressionTransformer("X[1] / (X[0] * 52)"), "Hourly_Income"))
])
interaction_mapper = DataFrameMapper([
	("Gender", [CategoricalDomain(), LabelBinarizer()]),
	("Marital", [CategoricalDomain(), LabelBinarizer()])
])
classifier = XGBClassifier()

pipeline = PMMLPipeline([
	("mapper", FeatureUnion([
		("scalar_mapper", scalar_mapper),
		("interaction", Pipeline([
			("interaction_mapper", interaction_mapper),
			("polynomial", PolynomialFeatures())
		]))
	])),
	("classifier", classifier)
])
pipeline.fit(audit_X, audit_y)

pipeline.configure(compact = True)
pipeline.verify(audit_X.sample(100), zeroThreshold = 1e-6, precision = 1e-6)

sklearn2pmml(pipeline, "pmml/XGBoostAudit.pmml")

sklearn2pmml

Python library for converting Scikit-Learn pipelines to PMML

AGPL-3.0
Latest version published 2 days ago

Package Health Score

76 / 100
Full package analysis

Similar packages