How to use the skimage.io.imsave function in skimage

To help you get started, we’ve selected a few skimage examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github scikit-image / scikit-image / doc / ext / plot2rst.py View on Github external
centered in an array of the specified shape before saving.
    """
    rescale = min(float(w_1) / w_2 for w_1, w_2 in zip(shape, image.shape))
    small_shape = (rescale * np.asarray(image.shape[:2])).astype(int)
    small_image = transform.resize(image, small_shape)

    if len(image.shape) == 3:
        shape = shape + (image.shape[2],)
    background_value = dtype_range[small_image.dtype.type][1]
    thumb = background_value * np.ones(shape, dtype=small_image.dtype)

    i = (shape[0] - small_shape[0]) // 2
    j = (shape[1] - small_shape[1]) // 2
    thumb[i:i+small_shape[0], j:j+small_shape[1]] = small_image

    io.imsave(thumb_path, thumb)
github emilwallner / Coloring-greyscale-images / DC_one / Archive / deep_colorization.py View on Github external
model.fit(x=X, 
	y=Y,
	batch_size=1,
	epochs=1000)

# Test model
print(model.evaluate(X, Y, batch_size=1))
output = model.predict(X)

# Output colorizations
for i in range(len(output)):
	cur = np.zeros((128, 128, 3))
	cur[:,:,0] = Xtest[i][:,:,0]
	cur[:,:,1:] = output[i]
	imsave("colorizations/img_"+str(i)+".png", lab2rgb(cur))
	imsave("colorizations/img_gray_"+str(i)+".png", rgb2gray(lab2rgb(cur)))
github prashnani / pix2pix-tensorflow / main.py View on Github external
# To continue training from one of the checkpoints
			if not args.checkpoint_name:
				raise IOError('In test mode, a checkpoint is expected.')
			saver.restore(sess, args.checkpoint_name)
			# Test network
			print 'generating network output'
			for curr_test_image_name in test_image_names:			
				splits = curr_test_image_name.split('/')
				splits = splits[len(splits)-1].split('.')
				print curr_test_image_name
				batch_A,batch_B = load_images_paired(list([curr_test_image_name]),
					is_train = False, true_size = args.input_size, enlarge_size = args.enlarge_size)
				fake_B = sess.run(model.generator_output(image_A), 
					feed_dict={image_A: batch_A.astype('float32'), image_B: batch_B.astype('float32'), keep_prob: 1-args.dropout_rate})				
				io.imsave(out_dir+splits[0]+'_test_output_fakeB.png',(fake_B[0]+1.0)/2.0)
				io.imsave(out_dir+splits[0]+'_realB.png',(batch_B[0]+1.0)/2.0)
				io.imsave(out_dir+splits[0]+'_realA.png',(batch_A[0]+1.0)/2.0)
github wuhuikai / chainer-neural-style / neural_style.py View on Github external
img = original_colors(content_im_orig, img)
    if args.style_color:
        img = style_colors(content_im_orig, img)
    img = np.asarray(img, dtype=np.uint8)

    # Init result list
    if not os.path.isdir(args.out_folder):
        os.makedirs(args.out_folder)
    print('Result will save to {} ...\n'.format(args.out_folder))

    name = '{}_with_style(s)'.format(os.path.splitext(os.path.basename(args.content_image))[0])
    for path in args.style_images:
        name = '{}_{}'.format(name, os.path.splitext(os.path.basename(path))[0])
    if args.prefix:
        name = '{}_{}'.format(args.prefix, name)
    imsave(os.path.join(args.out_folder, '{}.png'.format(name)), img)
github oduwa / Pic-Numero / PicNumero / MLP.py View on Github external
img_features = None
        if(featureRepresentation == 'image'):
            img_features = img.flatten()
        elif(featureRepresentation == 'pca'):
            img_features = decomposition.PCA(n_components=8).fit_transform(img.flatten())
        elif(featureRepresentation == 'glcm'):
            img_features = Helper.get_textural_features(img, 1, True)
        clf = get_model()
        result = clf.predict(img_features.reshape(1,-1))

        if(shouldSaveResult == True):
            # Save image with result in filename
            if os.path.exists("Results"):
                shutil.rmtree("Results")
            os.makedirs("Results")
            io.imsave("Results/{}_{}.png".format(Helper.generate_random_id(8), result), img)

        return result
    elif(isinstance(img, list)):
        if(featureRepresentation == 'glcm'):
            sample_size = 16
        else:
            sample_size = 20*20

        test_data = np.zeros((len(img), sample_size))

        i = 0
        for image in img:
            if(featureRepresentation == 'image'):
                test_data[i] = image.flatten()
            elif(featureRepresentation == 'pca'):
                test_data[i] = decomposition.PCA(n_components=8).fit_transform(image.flatten())
github pambros / CNN-2D-X-Ray-Catheter-Detection / python / common / UtilImage.py View on Github external
def SaveImage(_path, _buffer):
	# with warnings.catch_warnings():
		# warnings.simplefilter("ignore")
		# ski.io.imsave(_path, _buffer)
	ski.io.imsave(_path, _buffer)
github sveitser / kaggle_diabetic / preprocessing.py View on Github external
def SaveFinalImage(self,currently_considered_image_path,current_image_loaded):
        io.imsave(currently_considered_image_path,current_image_loaded)
github gregwchase / eyenet / src / rotate_images.py View on Github external
Rotates image based on a specified amount of degrees

    INPUT
        file_path: file path to the folder containing images.
        degrees_of_rotation: Integer, specifying degrees to rotate the
        image. Set number from 1 to 360.
        lst_imgs: list of image strings.

    OUTPUT
        Images rotated by the degrees of rotation specififed.
    '''

    for l in lst_imgs:
        img = io.imread(file_path + str(l) + '.jpeg')
        img = rotate(img, degrees_of_rotation)
        io.imsave(file_path + str(l) + '_' + str(degrees_of_rotation) + '.jpeg', img)
github csdwren / SelfDeblur / selfdeblur_levin_iter20k.py View on Github external
out_k_m = out_k.view(-1,1,opt.kernel_size[0],opt.kernel_size[1])
        # print(out_k_m)
        out_y = nn.functional.conv2d(out_x, out_k_m, padding=0, bias=None)

        total_loss = mse(out_y, y) + tv_loss(out_x) #+ tv_loss2(out_k_m)
        total_loss.backward()
        optimizer.step()

        if (step+1) % opt.save_frequency == 0:
            #print('Iteration %05d' %(step+1))

            save_path = os.path.join(opt.save_path, '%s_x.png'%imgname)
            out_x_np = torch_to_np(out_x)
            out_x_np = out_x_np.squeeze()
            out_x_np = out_x_np[padh//2:padh//2+img_size[1], padw//2:padw//2+img_size[2]]
            imsave(save_path, out_x_np)

            save_path = os.path.join(opt.save_path, '%s_k.png'%imgname)
            out_k_np = torch_to_np(out_k_m)
            out_k_np = out_k_np.squeeze()
            out_k_np /= np.max(out_k_np)
            imsave(save_path, out_k_np)

            torch.save(net, os.path.join(opt.save_path, "%s_xnet.pth" % imgname))
            torch.save(net_kernel, os.path.join(opt.save_path, "%s_knet.pth" % imgname))
github wuhuikai / DeepGuidedFilter / ImageProcessing / hdrnet / hdrnet / bin / run.py View on Github external
ms_ = sess.run(ms, feed_dict=feed_dict)
          for i, m in enumerate(ms_):
            output_path = os.path.join(args.output, fname+"_ms_{}.png".format(i))
            skimage.io.imsave(output_path, m)

        if len(fr) > 0:
          fr_ = sess.run(fr, feed_dict=feed_dict)
          for i, m in enumerate(fr_):
            output_path = os.path.join(args.output, fname+"_fr_{}.png".format(i))
            skimage.io.imsave(output_path, m)

        if len(guide) > 0:
          guide_ = sess.run(guide, feed_dict=feed_dict)
          for i, g in enumerate(guide_):
            output_path = os.path.join(args.output, fname+"_guide_{}.png".format(i))
            skimage.io.imsave(output_path, g)