How to use the skimage.io.imread function in skimage

To help you get started, we’ve selected a few skimage examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github OSGeo / grass-addons / grass7 / imagery / i.ann.maskrcnn / maskrcnnlib / utils.py View on Github external
if len(np.shape(loadedImage)) == 2:
                maskImage = loadedImage
            else:
                maskImage = loadedImage[:, :, 0]
        except:
            return None, None, 1
        mask = np.zeros([maskImage.shape[0], maskImage.shape[1], 1])
        # TODO: Take a look to resizing in square, etc. modes
        maskAppend = np.zeros([maskImage.shape[0], maskImage.shape[1], 1])
        class_ids = np.array([self.classes[a[0].split('-')[-2]]])
        mask[:, :, 0] = maskImage.astype(np.bool)

        for i in range(1, len(a)):
            np.append(class_ids, self.classes[a[i].split('-')[-2]])
            try:
                loadedImage = skimage.io.imread(a[0])
                if len(np.shape(loadedImage)) == 2:
                    maskAppend[:, :, 0] = loadedImage.astype(np.bool)
                else:
                    maskAppend[:, :, 0] = loadedImage[:, :, 0].astype(np.bool)
            except:
                return None, None, 1
            np.concatenate((mask, maskAppend), 2)

        return mask, class_ids, 0
github huster-wgm / geoseg / src / datasets.py View on Github external
def __getitem__(self, idx):
        src_file = self.srcpath % self.datalist[idx]
        tar_file = self.tarpath % self.datalist[idx]

        src = imread(src_file)
        tar = imread(tar_file)
        assert len(tar.shape) == 2, "Mask should be 2D."
        tar_sub = vision.shift_edge(tar, self.tar_ch)
        # src => uint8 to float tensor
        src = (src / 255).transpose((2, 0, 1))
        src = torch.from_numpy(src).float()
        # tar => uint8 to float tensor
        tar = vision.cls_to_label(tar, self.tar_ch).transpose((2, 0, 1))
        tar = torch.from_numpy(tar).float()
        # tar_sub => float to float tensor
        tar_sub = tar_sub.transpose((2, 0, 1))
        tar_sub = torch.from_numpy(tar_sub).float()
        sample = {"src":src,
                  "tar":tar,
                  "tar_sub":tar_sub,
                 }
        return sample
github LEB-EPFL / DEFCoN / defcon / datasets.py View on Github external
dividing pixel values by the bit depth of the images.

    Parameters
    ----------
    input_file : str
        Path and filename to the TIF image/stack.
    normalize : bool
        Determines whether the images will be normalized.

    Returns
    -------
    data : array_like
        The normalized array of images.

    """
    data = io.imread(input_file)
    if data.ndim == 3:
        data = data[:, :, :, np.newaxis]
    elif data.ndim == 2:
        data = data[np.newaxis, :, :, np.newaxis]
    else:
        raise ImageDimError('Tiff image should be grayscale and 2D '
                            '(3D if stack)')
    # Converting from uint to float
    if data.dtype == 'uint8':
        max_uint = 255
    elif data.dtype == 'uint16':
        max_uint = 2 ** 16 - 1
    else:
        raise ImageTypeError('Tiff image type should be uint8 or uint16')
    data = data.astype('float')
github IndicoDataSolutions / Foxhound / foxhound / utils / load.py View on Github external
def img_load(path,w,h,resize=True):
	img = skimage.io.imread(path)
	if len(img.shape) == 2:
		img = np.dstack((img,img,img))
	if resize:
		img = resize(img,(w,h)).astype(np.uint8)
	img = cvtColor(img,COLOR_BGR2RGB)
	return img
github RiweiChen / FaceTools / aligment.py View on Github external
for i in range(num_point):
        for j in range(2):
            src[i][j]=points[k]
            k=k+1
    #根据检测到的点,求其相应的仿射变换矩阵
    tfrom=tf.estimate_transform('affine',dst,src)
    #用opencv的试试,其只能采用三个点,计算矩阵M
#    pts1 = np.float32([[src[0][0],src[0][1]],[src[1][0],src[1][1]],[src[2][0],src[2][1]]])
#    pts2 = np.float32([[dst[0][0],dst[0][1]],[dst[1][0],dst[1][1]],[dst[2][0],dst[2][1]]])
#    M = cv2.getAffineTransform(pts2,pts1)
    #用最小二乘法的方法进行处理    
    pts3 = np.float32([[src[0][0],src[0][1]],[src[1][0],src[1][1]],[src[2][0],src[2][1]],[src[3][0],src[3][1]],[src[4][0],src[4][1]]])
    pts4 = np.float32([[dst[0][0],dst[0][1]],[dst[1][0],dst[1][1]],[dst[2][0],dst[2][1]],[dst[3][0],dst[3][1]],[dst[4][0],dst[4][1]]])
    N = compute_affine_transform(pts4,pts3)
    #
    im=skimage.io.imread(filename)
    if im.ndim==3:
        rows,cols,ch = im.shape
    else:
        rows,cols = im.shape
    warpimage_cv2 = cv2.warpAffine(im,N,(cols,rows))
    warpimage=tf.warp(im,inverse_map=tfrom)
    
    return warpimage,warpimage_cv2
github mlosch / emu / emu / image.py View on Github external
Boldly copied from the caffe.io routine load_image: https://github.com/BVLC/caffe/blob/master/python/caffe/io.py

    Parameters
    ----------
    filename : string
    color : boolean
        flag for color format. True (default) loads as RGB while False
        loads as intensity (if image is already grayscale).

    Returns
    -------
    image : an image with type np.float32 in range [0, 1]
        of size (H x W x 3) in RGB or
        of size (H x W x 1) in grayscale.
    """
    img = skimage.img_as_float(skimage.io.imread(filename, as_grey=not color)).astype(np.float32)
    if img.ndim == 2:
        img = img[:, :, np.newaxis]
        if color:
            img = np.tile(img, (1, 1, 3))
    elif img.shape[2] == 4:
        img = img[:, :, :3]
    return img
github DigitalGlobe / gbdxtools / gbdxtools / rda / fetch / conc / asyncio / async.py View on Github external
def bytes_to_array(bstring):
    if bstring is None:
        return onfail()
    try:
        fd = NamedTemporaryFile(prefix='gbdxtools', suffix='.tif', delete=False)
        fd.file.write(bstring)
        fd.file.flush()
        fd.close()
        arr = imread(fd.name)
        if len(arr.shape) == 3:
            arr = np.rollaxis(arr, 2, 0)
        else:
            arr = np.expand_dims(arr, axis=0)
    except Exception as e:
        arr = on_fail()
    finally:
        fd.close()
        os.remove(fd.name)
    return arr
github RedisAI / redisai-examples / sentinel / model_run.py View on Github external
import redisai as rai
from skimage import io
import json

con = rai.Client(host='159.65.150.75', port=6379, db=0)


img_path = '../models/imagenet/data/cat.jpg'

class_idx = json.load(open("../models/imagenet/data/imagenet_classes.json"))

image = io.imread(img_path)

tensor = rai.BlobTensor.from_numpy(image)
out3 = con.tensorset('image', tensor)
out4 = con.scriptrun('imagenet_script', 'pre_process', 'image', 'temp1')
out5 = con.modelrun('imagenet_model', 'temp1', 'temp2')
out6 = con.scriptrun('imagenet_script', 'post_process', 'temp2', 'out')
final = con.tensorget('out')
ind = final.value[0]
print(ind, class_idx[str(ind)])
github septicmk / MEHI / serial / MEHI_segmentation.py View on Github external
def read(self, time):
        '''
        read image according to time
        Args:
            time: current timepoint
        Returns:
            image_stack: tiff image list
        '''
        image_stack = io.imread('./embryo_8bit.tif')
        return image_stack